852 resultados para fire sensors
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Species from the Solenopsis saevissima (Smith) (Hymenoptera: Formicidae) species group are native to South America and have a cosmopolitan distribution because they have been accidentally introduced in many countries around the world. In Brazil, they have a wide distribution, including urban areas. The present study was conducted to investigate the characterization of Solenopsis genus populations associated with urban/human interference sites in Brazil by analyzing the mitochondrial gene cytochrome oxidase I and estimating the degree of relatedness of these populations to make inferences about their phylogeny and also observe the patterns of mitochondrial haplotype (mitotype) distribution across their range. The results revealed complete geographical coherence and polyphyly for the Solenopsis invicta Buren and Solenopsis saevissima species groups, which confirms the diversity of the genera. It also suggests the possibility that reproductively-isolated populations occur, resulting in the evolutionary process of speciation. No predominant haplotype was found in the populations analyzed, but some were more prevalent.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
QuestionsWe aimed to analyse the effect of fire on flowering in subtropical grasslands, by addressing the following questions: will fire history affect flowering? If yes, do fire feedbacks influence flowering or is it just the removal of above-ground biomass? Are there differences in burned and mowed plots?LocationSubtropical grasslands in Southern Brazil (30 degrees 03S, 51 degrees 07W).MethodsWe established plots in areas with different fire histories: 30d (30 plots: five replicates), 1yr (14 replicates), 3yr (30 plots: five replicates) since the last fire, in experimentally burned and mowed plots (14 replicates each). We counted the number of flowering species, as well as the number of flowering stalks.ResultsGraminoid species flowered in highest numbers 1yr after fire, whilst forbs had more species flowering just after fire, indicating different reproductive strategies in post-fire environments. Mowing was not as efficient as fire in stimulating flowering. Finally, the different functional groups showed different flowering responses to time since last fire and to the different types of management.ConclusionsOur results show fire stimulated flowering. Although mowing can be a good alternative for maintaining plant diversity, our study showed that this practice is not as efficient as fire in stimulating flowering. However, fire season should be noted as a limiting factor to the recovery of C-3 grasses in these subtropical grasslands, and annual burns may be harmful to C-4 grasses, since they delay their flowering to the next post-fire growing season.
Resumo:
Thin films of the bis[2,3,9,10,16,17,23,24-octachlorophthalocyaninate] lutetium(III) complex (LuPc2Cl32) have been prepared by the Langmuir-Blodgett and the Langmuir-Schaefer (LS) techniques. The influence of the chlorine substituents in the structure of the films and in their spectroscopic, electrochemical and sensing properties has been evaluated. The pi-A isotherms exhibit a monolayer stability greater than the observed in the unsubstituted analogue (LuPc2), being easily transferred to solid substrates, also in contrast to LuPc2. The LB and LS films present a linear growth forming stratified layers, monitored by UV-VIS absorption spectroscopy. The latter also revealed the presence of LuPc2Cl32 in the form of monomers and aggregates in both films. The FTIR data showed that the LuPc2Cl32 molecules present a non-preferential arrangement in both films. Monolayers of LB and LS were deposited onto 6 nm Ag island films to record surface-enhanced resonance Raman scattering (SERRS), leading to enhancement factors close to 2 x 10(3). Finally, LB and LS films deposited onto ITO glass have been successfully used as voltammetric sensors for the detection of catechol. The improved electroactivity of the LB and LS films has been confirmed by the reduction of the overpotential of the oxidation of catechol. The enhancement of the electrocatalytic effect observed in LB and LS films is the result of the nanostructured arrangement of the surface which increases the number of active sites. The sensors show a limit of detection in the range of 10(-5) mol/L.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Landscape fires show large variability in the amount of biomass or fuel consumed per unit area burned. Fuel consumption (FC) depends on the biomass available to burn and the fraction of the biomass that is actually combusted, and can be combined with estimates of area burned to assess emissions. While burned area can be detected from space and estimates are becoming more reliable due to improved algorithms and sensors, FC is usually modeled or taken selectively from the literature. We compiled the peerreviewed literature on FC for various biomes and fuel categories to understand FC and its variability better, and to provide a database that can be used to constrain biogeochemical models with fire modules. We compiled in total 77 studies covering 11 biomes including savanna (15 studies, average FC of 4.6 t DM (dry matter) ha 1 with a standard deviation of 2.2), tropical forest (n = 19, FC = 126 +/- 77), temperate forest (n = 12, FC = 58 +/- 72), boreal forest (n = 16, FC = 35 +/- 24), pasture (n = 4, FC = 28 +/- 9.3), shifting cultivation (n = 2, FC = 23, with a range of 4.0-43), crop residue (n = 4, FC = 6.5 +/- 9.0), chaparral (n = 3, FC = 27 +/- 19), tropical peatland (n = 4, FC = 314 +/- 196), boreal peatland (n = 2, FC = 42 [42-43]), and tundra (n = 1, FC = 40). Within biomes the regional variability in the number of measurements was sometimes large, with e. g. only three measurement locations in boreal Russia and 35 sites in North America. Substantial regional differences in FC were found within the defined biomes: for example, FC of temperate pine forests in the USA was 37% lower than Australian forests dominated by eucalypt trees. Besides showing the differences between biomes, FC estimates were also grouped into different fuel classes. Our results highlight the large variability in FC, not only between biomes but also within biomes and fuel classes. This implies that substantial uncertainties are associated with using biome-averaged values to represent FC for whole biomes. Comparing the compiled FC values with co-located Global Fire Emissions Database version 3 (GFED3) FC indicates that modeling studies that aim to represent variability in FC also within biomes, still require improvements as they have difficulty in representing the dynamics governing FC.
iCONVERT: an integrated device for the UV-assisted determination of H2S via mid-infrared gas sensors
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)