987 resultados para fiducial diffraction pattern


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Copper oxide (CuO) is one of the most important transition metal oxides due to its unique properties. It is used in various technological applications such as high critical temperature, superconductors, gas sensors, in photoconductive applications and so on. Recently, it has been used as an antimicrobial agent against various pathogenic bacteria. In the present investigation, we studied the structural and antidermatophytic properties of CuO nanoparticles (NPs) synthesized by a precipitation technique. Copper sulfate was used as a precursor and sodium hydroxide as a reducing agent. Scanning electron microscopy (SEM) showed flower-shaped CuO NPs and X-ray diffraction (XRD) pattern showed the crystalline nature of CuO NPs. These NPs were evaluated against two prevalent species of dermatophytes, i.e. Trichophyton rubrum and T. mentagrophytes by using the broth microdilution technique. Further, the NPs activity was also compared with synthetic sertaconazole. Although better antidermatophytic activity was exhibited with sertaconazole as compared to NPs, being synthetic, sertaconazole may not be preferred, as it shows different adverse effects. Trichophyton mentagrophytes is more susceptible to NPs than T. rubrum. A phylogenetic approach was applied for predicting differences in susceptibility of pathogens.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The triple perovskites Ba3ZnRu2-xIrxO9 with x = 0, 1, and 2 are insulating compounds in which Ru(Ir) cations form a dimer state. Polycrystalline samples of these materials were studied using neutron powder diffraction (NPD) at 10 and 295 K. No structural transition nor evidence of long range magnetic order was observed within the investigated temperature range. The results from structural refinements of the NPD data and its polyhedral analysis are presented, and discussed as a function of Ru/Ir content. (C) 2015 Elsevier Masson SAS. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multiferroic Pb(Fe2/3W1/3)O-3 ceramics were synthesized via a modified two-stage Columbite method. Single phase formation was confirmed from the analysis of x-ray and neutron diffraction patterns recorded at room temperature. Structural analysis of the diffraction data reveals cubic phase (space group Pm-3m) for the title compound. Magnetic structure of the title compound at room temperature exhibits G-type antiferromagnetic structure. The Mossbauer spectroscopy and Electron Paramagnetic Resonance (EPR) studies were carried out at 300 K. The isomer shift and quadrupole splitting of the Mossbauer spectra confirms the trivalent state of iron (Fe3+). The Mossbauer spectra also suggest that the iron and tungsten are randomly distributed at the octahedral, B site. EPR spectra show a single broad line associated with Fe3+ ions. Both spectra clearly exhibit weak ferromagnetic behaviour of Pb(Fe2/3W1/3)O-3 ceramic at 300 K. Considering neutron diffraction, Mossbauer and EPR results together, it may be stated here that Pb(Fe2/3W1/3)O-3 exhibits antiferromagnetic behavior along with weak ferromagnetism at room temperature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Self-assembly has been recognized as an efficient tool for generating a wide range of functional, chemically, or physically textured surfaces for applications in small scale devices. In this work, we investigate the stability of thin films of polymer solutions. For low concentrations of polymer in the solution, long length scale dewetting patterns are obtained with wavelength approximately few microns. Whereas, for concentrations above a critical value, bimodal dispersion curves are obtained with the dominant wavelength being up to two orders smaller than the usual dewetting length scale. We further show that the short wavelength corresponds to the phase separation in the film resulting in uniformly distributed high and low concentration regions. Interestingly, due to the solvent entropy, at very high concentration values of polymer, a re-entrant behaviour is observed with the dominant length scale now again corresponding to the dewetting wavelength. Thus, we show that the binary films of polymer solutions provide additional control parameters that can be utilized for generating functional textured surfaces for various applications. (C) 2016 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The magnetic structures and the magnetic phase transitions in the Mn-doped orthoferrite TbFeO3 studied using neutron powder diffraction are reported. Magnetic phase transitions are identified at T-N(Fe/Mn) approximate to 295K where a paramagnetic-to-antiferromagnetic transition occurs in the Fe/Mn sublattice, T-SR(Fe/Mn) approximate to 26K where a spin-reorientation transition occurs in the Fe/Mn sublattice and T-N(R) approximate to 2K where Tb-ordering starts to manifest. At 295 K, the magnetic structure of the Fe/Mn sublattice in TbFe0.5Mn0.5O3 belongs to the irreducible representation Gamma(4) (G(x)A(y)F(z) or Pb'n'm). A mixed-domain structure of (Gamma(1) + Gamma(4)) is found at 250K which remains stable down to the spin re-orientation transition at T-SR(Fe/Mn) approximate to 26K. Below 26K and above 250 K, the majority phase (>80%) is that of Gamma(4). Below 10K the high-temperature phase Gamma(4) remains stable till 2K. At 2 K, Tb develops a magnetic moment value of 0.6(2) mu(B)/f.u. and orders long-range in F-z compatible with the Gamma(4) representation. Our study confirms the magnetic phase transitions reported already in a single crystal of TbFe0.5Mn0.5O3 and, in addition, reveals the presence of mixed magnetic domains. The ratio of these magnetic domains as a function of temperature is estimated from Rietveld refinement of neutron diffraction data. Indications of short-range magnetic correlations are present in the low-Q region of the neutron diffraction patterns at T < T-SR(Fe/Mn). These results should motivate further experimental work devoted to measure electric polarization and magnetocapacitance of TbFe0.5Mn0.5O3. (C) 2016 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The magnetic structures and the magnetic phase transitions in the Mn-doped orthoferrite TbFeO3 studied using neutron powder diffraction are reported. Magnetic phase transitions are identified at T-N(Fe/Mn) approximate to 295K where a paramagnetic-to-antiferromagnetic transition occurs in the Fe/Mn sublattice, T-SR(Fe/Mn) approximate to 26K where a spin-reorientation transition occurs in the Fe/Mn sublattice and T-N(R) approximate to 2K where Tb-ordering starts to manifest. At 295 K, the magnetic structure of the Fe/Mn sublattice in TbFe0.5Mn0.5O3 belongs to the irreducible representation Gamma(4) (G(x)A(y)F(z) or Pb'n'm). A mixed-domain structure of (Gamma(1) + Gamma(4)) is found at 250K which remains stable down to the spin re-orientation transition at T-SR(Fe/Mn) approximate to 26K. Below 26K and above 250 K, the majority phase (>80%) is that of Gamma(4). Below 10K the high-temperature phase Gamma(4) remains stable till 2K. At 2 K, Tb develops a magnetic moment value of 0.6(2) mu(B)/f.u. and orders long-range in F-z compatible with the Gamma(4) representation. Our study confirms the magnetic phase transitions reported already in a single crystal of TbFe0.5Mn0.5O3 and, in addition, reveals the presence of mixed magnetic domains. The ratio of these magnetic domains as a function of temperature is estimated from Rietveld refinement of neutron diffraction data. Indications of short-range magnetic correlations are present in the low-Q region of the neutron diffraction patterns at T < T-SR(Fe/Mn). These results should motivate further experimental work devoted to measure electric polarization and magnetocapacitance of TbFe0.5Mn0.5O3. (C) 2016 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have designed and constructed a spin polarized low energy electron diffraction system working in the reflected electron pulse counting mode. This system is capable of measuring asymmetries due to spin-orbit and exchange interactions. Photoemission from a strained GaAs/GaAsP super lattice is used as the source of spin polarized electrons. Spin-orbit asymmetry is evaluated for Ir(100) single crystal at various energies. Subsequently, exchange asymmetry has been evaluated on 40 monolayer Fe deposited on Ir(100). This instrument proves to be useful in understanding structure and magnetism at surfaces. (C) 2016 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The magnetic structures and the magnetic phase transitions in the Mn-doped orthoferrite TbFeO3 studied using neutron powder diffraction are reported. Magnetic phase transitions are identified at T-N(Fe/Mn) approximate to 295K where a paramagnetic-to-antiferromagnetic transition occurs in the Fe/Mn sublattice, T-SR(Fe/Mn) approximate to 26K where a spin-reorientation transition occurs in the Fe/Mn sublattice and T-N(R) approximate to 2K where Tb-ordering starts to manifest. At 295 K, the magnetic structure of the Fe/Mn sublattice in TbFe0.5Mn0.5O3 belongs to the irreducible representation Gamma(4) (G(x)A(y)F(z) or Pb'n'm). A mixed-domain structure of (Gamma(1) + Gamma(4)) is found at 250K which remains stable down to the spin re-orientation transition at T-SR(Fe/Mn) approximate to 26K. Below 26K and above 250 K, the majority phase (>80%) is that of Gamma(4). Below 10K the high-temperature phase Gamma(4) remains stable till 2K. At 2 K, Tb develops a magnetic moment value of 0.6(2) mu(B)/f.u. and orders long-range in F-z compatible with the Gamma(4) representation. Our study confirms the magnetic phase transitions reported already in a single crystal of TbFe0.5Mn0.5O3 and, in addition, reveals the presence of mixed magnetic domains. The ratio of these magnetic domains as a function of temperature is estimated from Rietveld refinement of neutron diffraction data. Indications of short-range magnetic correlations are present in the low-Q region of the neutron diffraction patterns at T < T-SR(Fe/Mn). These results should motivate further experimental work devoted to measure electric polarization and magnetocapacitance of TbFe0.5Mn0.5O3. (C) 2016 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The magnetic structures and the magnetic phase transitions in the Mn-doped orthoferrite TbFeO3 studied using neutron powder diffraction are reported. Magnetic phase transitions are identified at T-N(Fe/Mn) approximate to 295K where a paramagnetic-to-antiferromagnetic transition occurs in the Fe/Mn sublattice, T-SR(Fe/Mn) approximate to 26K where a spin-reorientation transition occurs in the Fe/Mn sublattice and T-N(R) approximate to 2K where Tb-ordering starts to manifest. At 295 K, the magnetic structure of the Fe/Mn sublattice in TbFe0.5Mn0.5O3 belongs to the irreducible representation Gamma(4) (G(x)A(y)F(z) or Pb'n'm). A mixed-domain structure of (Gamma(1) + Gamma(4)) is found at 250K which remains stable down to the spin re-orientation transition at T-SR(Fe/Mn) approximate to 26K. Below 26K and above 250 K, the majority phase (>80%) is that of Gamma(4). Below 10K the high-temperature phase Gamma(4) remains stable till 2K. At 2 K, Tb develops a magnetic moment value of 0.6(2) mu(B)/f.u. and orders long-range in F-z compatible with the Gamma(4) representation. Our study confirms the magnetic phase transitions reported already in a single crystal of TbFe0.5Mn0.5O3 and, in addition, reveals the presence of mixed magnetic domains. The ratio of these magnetic domains as a function of temperature is estimated from Rietveld refinement of neutron diffraction data. Indications of short-range magnetic correlations are present in the low-Q region of the neutron diffraction patterns at T < T-SR(Fe/Mn). These results should motivate further experimental work devoted to measure electric polarization and magnetocapacitance of TbFe0.5Mn0.5O3. (C) 2016 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Load/Unload Response Ratio (LURR) method is proposed for short-to-intermediate-term earthquake prediction [Yin, X.C., Chen, X.Z., Song, Z.P., Yin, C., 1995. A New Approach to Earthquake Prediction — The Load/Unload Response Ratio (LURR) Theory, Pure Appl. Geophys., 145, 701–715]. This method is based on measuring the ratio between Benioff strains released during the time periods of loading and unloading, corresponding to the Coulomb Failure Stress change induced by Earth tides on optimally oriented faults. According to the method, the LURR time series usually climb to an anomalously high peak prior to occurrence of a large earthquake. Previous studies have indicated that the size of critical seismogenic region selected for LURR measurements has great influence on the evaluation of LURR. In this study, we replace the circular region usually adopted in LURR practice with an area within which the tectonic stress change would mostly affect the Coulomb stress on a potential seismogenic fault of a future event. The Coulomb stress change before a hypothetical earthquake is calculated based on a simple back-slip dislocation model of the event. This new algorithm, by combining the LURR method with our choice of identified area with increased Coulomb stress, is devised to improve the sensitivity of LURR to measure criticality of stress accumulation before a large earthquake. Retrospective tests of this algorithm on four large earthquakes occurred in California over the last two decades show remarkable enhancement of the LURR precursory anomalies. For some strong events of lesser magnitudes occurred in the same neighborhoods and during the same time periods, significant anomalies are found if circular areas are used, and are not found if increased Coulomb stress areas are used for LURR data selection. The unique feature of this algorithm may provide stronger constraints on forecasts of the size and location of future large events.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An analytical solution for the three-dimensional scattering and diffraction of plane P-waves by a hemispherical alluvial valley with saturated soil deposits is developed by employing Fourier-Bessel series expansion technique. Unlike previous studies, in which the saturated soil deposits were simulated with the single-phase elastic theory, in this paper, they are simulated with Biot's dynamic theory for saturated porous media, and the half space is assumed as a single-phase elastic medium. The effects of the dimensionless frequency, the incidence angle of P-wave and the porosity of soil deposits on the surface displacement magnifications of the hemispherical alluvial valley are investigated. Numerical results show that the existence of a saturated hemispherical alluvial valley has much influence on the surface displacement magnifications. It is more reasonable to simulate soil deposits with Biot's dynamic theory when evaluating the displacement responses of a hemispherical alluvial valley with an incidence of P-waves.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new X-ray diffraction method for characterising thermal mismatch stress (TMS) in SiCw–Al composite has been developed. The TMS and thermal mismatch strain (TMSN) in SiC whiskers are considered to be axis symmetrical, and can be calculated by measuring the lattice distortion of the whiskers. Not only the average TMS in whiskers and matrix can be obtained, but the TMS components along longitudinal and radial directions in the SiC whiskers can also be deduced. Experimental results indicate that the TMS in SiC whiskers is compressive, and tensile in the aluminium matrix. The TMS and TMSN components along the longitudinal direction in the SiC whiskers are greater than those along the radial direction for a SiCw–Al composite quenched at 500°C.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The diffraction and reflection of planar shock wave around a dusty square cavity is investigated numerically, which is embedded in the net bottom surface of a two-dimensional channel, and the induced gas-particle two-phase now. The wave patterns at different times are obtained for three different values of the particle diameter. The computational results show that the existence of particles affects appreciably the shock wave diffraction and cavity flow.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Free surface deformation is one of the most important physical phenomena in fluids with free surface. In the present paper, convection and surface deformation caused by thermocapillary effect in a rectangular cavity were investigated. In ground experiments, the convection was also affected by gravity. The cavity has a horizontal cross section of 52mm×42mm and the thikkness of the liquid layer is 4mm. Temperature difference between two sides of the liquid layer was increased gradually, and the flow in liquid layer will develop from steady to unstable convection. An optical diagnostic system consisting of a revised Michelson interferometer with image processor was developed to study fluid surface deformation in convection, and the displacements of free surface oscillation were determined. PIV technique was adopted to observe the evolution of flow pattern, and the velocity fields were obtained quantitatively. The present experiments demonstrate that surface deformation is quite distinct in buoyant-thermocapillary convection. in order to understand the mechanism of buoyant-thermocapillary convection, not only the hydrothermal wave instability but also the surface wave instability should be discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Position-dependent gene expression is a critical aspect of the development and behaviour of multicellular organisms. It requires a complex series of interactions to occur between different cell types in addition to intracellular signalling cascades. We used Escherichia coli to study the properties of an artificial signalling system at the interface between two expanding cell populations. We genetically engineered one population to produce a diffusible acyl-homoserine lactone (AHL) signal, and another population to respond to it. Our experiments demonstrate how such a signal can be used to reproducibly generate simple visible patterns with high accuracy in swimming agar. The producing and responding cassettes of two such signalling systems can be linked to produce a symmetric interface for bidirectional communication that can be used to visualise molecular logic. Intracellular feedback between these two cassettes would then create a framework for self-organised patterning of higher complexity. Adapting the experiments of Basu et al. (Basu et al., 2005) using cell motility, rather than a differential response to AHL concentrations as a way to define zones of response, we noted how the interaction of sender and receiver cell populations on a swimming plate could lead to complex pattern formation. Equipping highly motile strains such as E. coli MC1000 with AHL-mediated auto-inducing systems based on Vibrio fischeri luxI/luxR and Pseudomonas aeruginosa lasI/lasR cassettes would allow the amplification of a response to an AHL signal and its propagation. We designed and synthesised codon-optimised auto-inducing luxI/R and lasI/R cassettes as optimal gene expression is crucial for the generation of robust patterns. We still have to complete and test the entire genetic circuitry, although by modelling the system we were able to demonstrate its feasibility. © 2007 The Institution of Engineering and Technology.