872 resultados para family-school interaction


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Yeast two-hybrid and genetic interaction screens indicate that Bir1p, a yeast protein containing phylogenetically conserved antiapoptotic repeat domains called baculovirus inhibitor of apoptosis repeats (BIRs), is involved in chromosome segregation events. In the two-hybrid screen, Bir1p specifically interacts with Ndc10p, an essential component of the yeast kinetochore. Although Bir1p carries two BIR motifs in the N-terminal region, the C-terminal third of the protein is sufficient to provide strong interaction with Ndc10p and moderate interaction with Skp1p, another essential component of the yeast kinetochore. In addition, deletion of BIR1 is synthetically lethal with deletion of CBF1 or CTF19, genes specifying two other components of the yeast kinetochore. Yeast cells deleted of BIR1 have a chromosome-loss phenotype, which can be completely rescued by elevating NDC10 dosage. Furthermore, overexpression of either full-length or the C-terminal region of Bir1p can efficiently suppress the chromosome-loss phenotype of both bir1Δ null and skp1-4 mutants. Our data suggest that Bir1p participates in chromosome segregation events, either directly or via interaction with kinetochore proteins, and these effects are apparently not mediated by the BIR domains of Bir1p.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

β-catenin, the vertebrate homolog of the Drosophila Armadillo protein, has been shown to have dual cellular functions, as a component of both the cadherin-catenin cell adhesion complex and the Wnt signaling pathway. At Wnt signaling, β-catenin becomes stabilized in the cytoplasm and subsequently available for interaction with transcription factors of the lymphocyte enhancer factor-1/T-cell factor family, resulting in a nuclear localization of β-catenin. Although β-catenin does not bind DNA directly, its carboxyl- and amino-terminal regions exhibit a transactivating activity still not well understood molecularly. Here we report the identification of an interaction partner of β-catenin, a nuclear protein designated Pontin52. Pontin52 binds β-catenin in the region of Armadillo repeats 2–5 and, more importantly, also binds the TATA box binding protein. We provide evidence for an in vivo multiprotein complex composed of Pontin52, β-catenin, and lymphocyte enhancer factor-1/T-cell factor. Our results suggest involvement of Pontin52 in the nuclear function of β-catenin.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the intracellular death program, hetero- and homodimerization of different anti- and pro-apoptotic Bcl-2-related proteins are critical in the determination of cell fate. From a rat ovarian fusion cDNA library, we isolated a new pro-apoptotic Bcl-2 gene, Bcl-2-related ovarian killer (Bok). Bok had conserved Bcl-2 homology (BH) domains 1, 2, and 3 and a C-terminal transmembrane region present in other Bcl-2 proteins, but lacked the BH4 domain found only in anti-apoptotic Bcl-2 proteins. In the yeast two-hybrid system, Bok interacted strongly with some (Mcl-1, BHRF1, and Bfl-1) but not other (Bcl-2, Bcl-xL, and Bcl-w) anti-apoptotic members. This finding is in direct contrast to the ability of other pro-apoptotic members (Bax, Bak, and Bik) to interact with all of the anti-apoptotic proteins. In addition, negligible interaction was found between Bok and different pro-apoptotic members. In mammalian cells, overexpression of Bok induced apoptosis that was blocked by the baculoviral-derived cysteine protease inhibitor P35. Cell killing induced by Bok was also suppressed following coexpression with Mcl-1 and BHRF1 but not with Bcl-2, further indicating that Bok heterodimerized only with selective anti-apoptotic Bcl-2 proteins. Northern blot analysis indicated that Bok was highly expressed in the ovary, testis and uterus. In situ hybridization analysis localized Bok mRNA in granulosa cells, the cell type that underwent apoptosis during follicle atresia. Identification of Bok as a new pro-apoptotic Bcl-2 protein with restricted tissue distribution and heterodimerization properties could facilitate elucidation of apoptosis mechanisms in reproductive tissues undergoing hormone-regulated cyclic cell turnover.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dopamine is a neuromodulator involved in the control of key physiological functions. Dopamine-dependent signal transduction is activated through the interaction with membrane receptors of the seven-transmembrane domain G protein-coupled family. Among them, dopamine D2 receptor is highly expressed in the striatum and the pituitary gland as well as by mesencephalic dopaminergic neurons. Lack of D2 receptors in mice leads to a locomotor parkinsonian-like phenotype and to pituitary tumors. The D2 receptor promoter has characteristics of a housekeeping gene. However, the restricted expression of this gene to particular neurons and cells points to a strict regulation of its expression by cell-specific transcription factors. We demonstrate here that the D2 receptor promoter contains a functional retinoic acid response element. Furthermore, analysis of retinoic acid receptor-null mice supports our finding and shows that in these animals D2 receptor expression is reduced. This finding assigns to retinoids an important role in the control of gene expression in the central nervous system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Myosin II heavy chain (MHC) specific protein kinase C (MHC-PKC), isolated from Dictyostelium discoideum, regulates myosin II assembly and localization in response to the chemoattractant cyclic AMP. Immunoprecipitation of MHC-PKC revealed that it resides as a complex with several proteins. We show herein that one of these proteins is a homologue of the 14–3-3 protein (Dd14–3-3). This protein has recently been implicated in the regulation of intracellular signaling pathways via its interaction with several signaling proteins, such as PKC and Raf-1 kinase. We demonstrate that the mammalian 14–3-3 ζ isoform inhibits the MHC-PKC activity in vitro and that this inhibition is carried out by a direct interaction between the two proteins. Furthermore, we found that the cytosolic MHC-PKC, which is inactive, formed a complex with Dd14–3-3 in the cytosol in a cyclic AMP-dependent manner, whereas the membrane-bound active MHC-PKC was not found in a complex with Dd14–3-3. This suggests that Dd14–3-3 inhibits the MHC-PKC in vivo. We further show that MHC-PKC binds Dd14–3-3 as well as 14–3-3ζ through its C1 domain, and the interaction between these two proteins does not involve a peptide containing phosphoserine as was found for Raf-1 kinase. Our experiments thus show an in vivo function for a member of the 14–3-3 family and demonstrate that MHC-PKC interacts directly with Dd14–3-3 and 14–3-3ζ through its C1 domain both in vitro and in vivo, resulting in the inhibition of the kinase.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Proteins of the regulator of G protein signaling (RGS) family accelerate GTP hydrolysis by the α subunits (Gα) of G proteins, leading to rapid recovery of signaling cascades. Many different RGS proteins can accelerate GTP hydrolysis by an individual Gα, and GTP hydrolysis rates of different Gαs can be enhanced by the same RGS protein. Consequently, the mechanisms for specificity in RGS regulation and the residues involved remain unclear. Using the evolutionary trace (ET) method, we have identified a cluster of residues in the RGS domain that includes the RGS-Gα binding interface and extends to include additional functionally important residues on the surface. One of these is within helix α3, two are in α5, and three are in the loop connecting α5 and α6. A cluster of surface residues on Gα previously identified by ET, and composed predominantly of residues from the switch III region and helix α3, is spatially contiguous with the ET-identified residues in the RGS domain. This cluster includes residues proposed to interact with the γ subunit of Gtα's effector, cGMP phosphodiesterase (PDEγ). The proximity of these clusters suggests that they form part of an interface between the effector and the RGS-Gα complex. Sequence variations in these residues correlate with PDEγ effects on GTPase acceleration. Because ET identifies residues important for all members of a protein family, these residues likely form a general site for regulation of G protein-coupled signaling cascades, possibly by means of effector interactions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The G protein β subunit Gβ5 deviates significantly from the other four members of Gβ-subunit family in amino acid sequence and subcellular localization. To detect the protein targets of Gβ5 in vivo, we have isolated a native Gβ5 protein complex from the retinal cytosolic fraction and identified the protein tightly associated with Gβ5 as the regulator of G protein signaling (RGS) protein, RGS7. Here we show that complexes of Gβ5 with RGS proteins can be formed in vitro from the recombinant proteins. The reconstituted Gβ5-RGS dimers are similar to the native retinal complex in their behavior on gel-filtration and cation-exchange chromatographies and can be immunoprecipitated with either anti-Gβ5 or anti-RGS7 antibodies. The specific Gβ5-RGS7 interaction is determined by a distinct domain in RGS that has a striking homology to Gγ subunits. Deletion of this domain prevents the RGS7-Gβ5 binding, although the interaction with Gα is retained. Substitution of the Gγ-like domain of RGS7 with a portion of Gγ1 changes its binding specificity from Gβ5 to Gβ1. The interaction of Gβ5 with RGS7 blocked the binding of RGS7 to the Gα subunit Gαo, indicating that Gβ5 is a specific RGS inhibitor.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Arabidopsis thaliana NPR1 has been shown to be a key regulator of gene expression during the onset of a plant disease-resistance response known as systemic acquired resistance. The npr1 mutant plants fail to respond to systemic acquired resistance-inducing signals such as salicylic acid (SA), or express SA-induced pathogenesis-related (PR) genes. Using NPR1 as bait in a yeast two-hybrid screen, we identified a subclass of transcription factors in the basic leucine zipper protein family (AHBP-1b and TGA6) and showed that they interact specifically in yeast and in vitro with NPR1. Point mutations that abolish the NPR1 function in A. thaliana also impair the interactions between NPR1 and the transcription factors in the yeast two-hybrid assay. Furthermore, a gel mobility shift assay showed that the purified transcription factor protein, AHBP-1b, binds specifically to an SA-responsive promoter element of the A. thaliana PR-1 gene. These data suggest that NPR1 may regulate PR-1 gene expression by interacting with a subclass of basic leucine zipper protein transcription factors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two arginine residues, Arg-181 and Arg-268, are conserved throughout the known family of FMN-containing enzymes that catalyze the oxidation of α-hydroxyacids. In the lactate oxidase from Aerococcus viridans, these residues have been changed to lysine in two single mutations and in a double mutant form. In addition, Arg-181 has been replaced by methionine to determine the effect of removing the positive charge on the residue. The effects of these replacements on the kinetic and thermodynamic properties are reported. With all mutant forms, there are only small effects on the reactivity of the reduced flavin with oxygen. On the other hand, the efficiency of reduction of the oxidized flavin by l-lactate is greatly reduced, particularly with the R268K mutant forms. The results demonstrate the importance of the two arginine residues in the binding of substrate and its interaction with the flavin, and are consistent with a previous hypothesis that they also play a role of charge neutralization in the transition state of substrate dehydrogenation. The replacement of Arg-268 by lysine also results in a slow conversion of the 8-CH3- substituent of FMN to yield 8-formyl-FMN, still tightly bound to the enzyme, and with significantly different physical and chemical properties from those of the FMN-enzyme.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Snf1 protein kinase family has been conserved in eukaryotes. In the yeast Saccharomyces cerevisiae, Snf1 is essential for transcription of glucose-repressed genes in response to glucose starvation. The direct interaction between Snf1 and its activating subunit, Snf4, within the kinase complex is regulated by the glucose signal. Glucose inhibition of the Snf1-Snf4 interaction depends on protein phosphatase 1 and its targeting subunit, Reg1. Here we show that Reg1 interacts with the Snf1 catalytic domain in the two-hybrid system. This interaction increases in response to glucose limitation and requires the conserved threonine in the activation loop of the kinase, a putative phosphorylation site. The inhibitory effect of Reg1 appears to require the Snf1 regulatory domain because a reg1Δ mutation no longer relieves glucose repression of transcription when Snf1 function is provided by the isolated catalytic domain. Finally, we show that abolishing the Snf1 catalytic activity by mutation of the ATP-binding site causes elevated, constitutive interaction with Reg1, indicating that Snf1 negatively regulates its own interaction with Reg1. We propose a model in which protein phosphatase 1, targeted by Reg1, facilitates the conformational change of the kinase complex from its active state to the autoinhibited state.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Expression of B7-family costimulatory molecules CD80 (B7–1) and CD86 (B7–2) on tumor cells enhances host immunity. However, the role of the two B7 receptors, CD28 and CTLA4 (CD152), on T cells in antitumor immune response has not been clearly elucidated. Based on the effects of anti-CD28 and anti-CTLA4 mAbs on T cell response, it was proposed that CD28-B7 interaction promotes antitumor immunity, whereas B7-CTLA4 interaction down-regulates it. A critical test for the hypothesis is whether selective engagement of CTLA4 receptors by their natural ligands CD80 and CD86 enhances or reduces antitumor immunity. Here we used tumors expressing wild-type and mutant CD80, as well as mice with targeted mutation of CD28, to address this issue. We report that in syngeneic wild-type mice, B7W (W88>A), a CD80 mutant that has lost binding to CD28 but retained binding to CTLA4, can enhance the induction of antitumor cytotoxic T lymphocytes (CTL); B7Y (Y201>A), which binds neither CD28 nor CTLA4, fails to do so. Consistent with these observations, B7W-transfected J558 plasmocytoma and EL4 thymoma grow significantly more slowly than those transfected with either vector alone or with B7Y. Optimal tumor rejection requires wild-type CD80. Moreover, expression of a high level of CD80 on thymoma EL4 cells conveys immunity in mice with a targeted mutation of CD28 gene. Taken together, our results demonstrate that B7-CTLA4 interaction enhances production of antitumor CTL and resistance to tumor challenge and that optimal enhancement of antitumor immunity by CD80 requires its engagement of both CD28 and CTLA4.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The transcription factor E2F plays a major role in cell cycle control in mammalian cells. E2F binding sites, which are present in the promoters of a variety of genes required for S phase, shift from a negative to a positive role in transcription at the commitment point, a crucial point in G1 that precedes the G1/S transition. Before the commitment point, E2F activity is repressed by members of the pocket proteins family. This repression is believed to be crucial for the proper control of cell growth. We have previously shown that Rb, the founding member of the pocket proteins family, represses E2F1 activity by recruiting the histone deacetylase HDAC1. Here, we show that the two other members of the pocket proteins family, p107 and p130, also are able to interact physically with HDAC1 in live cells. HDAC1 interacts with p107 and Rb through an “LXCXE”-like motif, similar to that used by viral transforming proteins to bind and inactivate pocket proteins. Indeed, we find that the viral transforming protein E1A competes with HDAC1 for p107 interaction. We also demonstrate that p107 is able to interact simultaneously with HDAC1 and E2F4, suggesting a model in which p107 recruits HDAC1 to repress E2F sites. Indeed, we demonstrate that histone deacetylase activity is involved in the p107- or p130-induced repression of E2F4. Taken together, our data suggest that all members of the E2F family are regulated in early G1 by similar complexes, containing a pocket protein and the histone deacetylase HDAC1.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chaperones of the Hsp70 family bind to unfolded or partially folded polypeptides to facilitate many cellular processes. ATP hydrolysis and substrate binding, the two key molecular activities of this chaperone, are modulated by the cochaperone DnaJ. By using both genetic and biochemical approaches, we provide evidence that DnaJ binds to at least two sites on the Escherichia coli Hsp70 family member DnaK: under the ATPase domain in a cleft between its two subdomains and at or near the pocket of substrate binding. The lower cleft of the ATPase domain is defined as a binding pocket for the J-domain because (i) a DnaK mutation located in this cleft (R167H) is an allele-specific suppressor of the binding defect of the DnaJ mutation, D35N and (ii) alanine substitution of two residues close to R167 in the crystal structure, N170A and T173A, significantly decrease DnaJ binding. A second binding determinant is likely to be in the substrate-binding domain because some DnaK mutations in the vicinity of the substrate-binding pocket are defective in either the affinity (G400D, G539D) or rate (D526N) of both peptide and DnaJ binding to DnaK. Binding of DnaJ may propagate conformational changes to the nearby ATPase catalytic center and substrate-binding sites as well as facilitate communication between these two domains to alter the molecular properties of Hsp70.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The PKC1–MPK1 pathway in yeast functions in the maintenance of cell wall integrity and in the stress response. We have identified a family of genes that are putative regulators of this pathway. WSC1, WSC2, and WSC3 encode predicted integral membrane proteins with a conserved cysteine motif and a WSC1–green fluorescence protein fusion protein localizes to the plasma membrane. Deletion of WSC results in phenotypes similar to mutants in the PKC1–MPK1 pathway and an increase in the activity of MPK1 upon a mild heat treatment is impaired in a wscΔ mutant. Genetic analysis places the function of WSC upstream of PKC1, suggesting that they play a role in its activation. We also find a genetic interaction between WSC and the RAS–cAMP pathway. The RAS–cAMP pathway is required for cell cycle progression and for the heat shock response. Overexpression of WSC suppresses the heat shock sensitivity of a strain in which RAS is hyperactivated and the heat shock sensitivity of a wscΔ strain is rescued by deletion of RAS2. The functional characteristics and cellular localization of WSC suggest that they may mediate intracellular responses to environmental stress in yeast.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An additivity-based sequence to reactivity algorithm for the interaction of members of the Kazal family of protein inhibitors with six selected serine proteinases is described. Ten consensus variable contact positions in the inhibitor were identified, and the 19 possible variants at each of these positions were expressed. The free energies of interaction of these variants and the wild type were measured. For an additive system, this data set allows for the calculation of all possible sequences, subject to some restrictions. The algorithm was extensively tested. It is exceptionally fast so that all possible sequences can be predicted. The strongest, the most specific possible, and the least specific inhibitors were designed, and an evolutionary problem was solved.