787 resultados para expert system, fuzzy logic, pan stage models, supervisory control
Resumo:
O objetivo deste trabalho é avaliar os riscos de ocorrências de intrusos em um sistema de computação em nuvem para sistemas distribuídos utilizando lógica nebulosa. A computação em nuvem é um tema que vem sendo bastante abordado e vem alavancando discussões calorosas, tanto na comunidade acadêmica quanto em palestras profissionais. Embora essa tecnologia esteja ganhando mercado, alguns estudiosos encontram-se céticos afirmando que ainda é cedo para se tirar conclusões. Isto se deve principalmente por causa de um fator crítico, que é a segurança dos dados armazenados na nuvem. Para esta dissertação, foi elaborado um sistema distribuído escrito em Java com a finalidade de controlar um processo de desenvolvimento colaborativo de software na nuvem, o qual serviu de estudo de caso para avaliar a abordagem de detecção de intrusos proposta. Este ambiente foi construído com cinco máquinas (sendo quatro máquinas virtuais e uma máquina real). Foram criados dois sistemas de inferência nebulosos, para análise de problemas na rede de segurança implementados em Java, no ambiente distribuído. Foram realizados diversos testes com o intuito de verificar o funcionamento da aplicação, apresentando um resultado satisfatório dentro dessa metodologia.
Resumo:
Os testes são uma atividade crucial no desenvolvimento de sistemas, pois uma boa execução dos testes podem expor anomalias do software e estas podem ser corrigidas ainda no processo de desenvolvimento, reduzindo custos. Esta dissertação apresenta uma ferramenta de testes chamada SIT (Sistema de Testes) que auxiliará no teste de Sistemas de Informações Geográficas (SIG). Os SIG são caracterizados pelo uso de informações espaciais georreferenciadas, que podem gerar um grande número de casos de teste complexos. As técnicas tradicionais de teste são divididas em funcionais e estruturais. Neste trabalho, o SIT abordará os testes funcionais, focado em algumas técnicas clássicas como o particionamento de equivalência e análise do Valor Limite. O SIT também propõe o uso de Lógica Nebulosa como uma ferramenta que irá sugerir um conjunto mínimo de testes a executar nos SIG, ilustrando os benefícios da ferramenta.
Resumo:
Este trabalho está inserido no campo da Geomática e se concentra, mais especificamente, no estudo de métodos para exploração e seleção de rotas em espaços geográficos sem delimitação prévia de vias trafegáveis. As atividades que poderiam se beneficiar de estudos desse tipo estão inseridas em áreas da engenharia, logística e robótica. Buscou-se, com as pesquisas realizadas nesse trabalho, elaborar um modelo computacional capaz de consultar as informações de um terreno, explorar uma grande quantidade de rotas viáveis e selecionar aquelas rotas que oferecessem as melhores condições de trajetória entre dois pontos de um mapa. Foi construído um sistema a partir do modelo computacional proposto para validar sua eficiência e aplicabilidade em diferentes casos de estudo. Para que esse sistema fosse construído, foram combinados conceitos de sistemas baseados em agentes, lógica nebulosa e planejamento de rotas em robótica. As informações de um terreno foram organizadas, consumidas e apresentadas pelo sistema criado, utilizando mapas digitais. Todas as funcionalidades do sistema foram construídas por meio de software livre. Como resultado, esse trabalho de pesquisa disponibiliza um sistema eficiente para o estudo, o planejamento ou a simulação de rotas sobre mapas digitais, a partir de um módulo de inferência nebuloso aplicado à classificação de rotas e um módulo de exploração de rotas baseado em agentes autônomos. A perspectiva para futuras aplicações utilizando o modelo computacional apresentado nesse trabalho é bastante abrangente. Acredita-se que, a partir dos resultados alcançados, esse sistema possa ajudar a reduzir custos e automatizar equipamentos em diversas atividades humanas.
Resumo:
Este trabalho propõe-se a descrever uma metodologia para avaliação do sistema de educação fundamental do Estado do Rio de Janeiro, que utiliza a teoria dos conjuntos nebulosos como base, no processo de inferência para geração do Indicador Avaliação do Sistema Educacional (IASE). A base de dados utilizada para criação do indicador IASE foi extraída de dados obtidos do Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira (INEP). Em seguida, os resultados obtidos são apresentados em um Sistema de informação Geográfica (SIG) possibilitando compreender a correlação de valores alfanuméricos e espacial das informações geradas no sistema nebuloso, de modo apoiar a tomada de decisão das ações governamentais no setor.
Resumo:
Esta dissertação apresenta o desenvolvimento de um sistema de tomada de decisão que propõe uma metodologia inteligente, de tal maneira a efetuar a melhor alocação possível de um grupo de usuários a um grupo de recursos em um espaço geográfico. Tal metodologia se baseou na lógica fuzzy e ao longo da dissertação foram feitas comparações com outras técnicas, como o Algoritmo Ingênuo e a Busca Exaustiva. O conjunto de dados que foi adotado como o escopo desse trabalho foi a matrícula de alunos do município de Nova Iguaçu.
Resumo:
The paper aims to give the concept and functional approach of knowledge system with reference to the fisheries sector. The background and strategies to develop knowledge workers by translating the concept of knowledge system are presented. The job opportunities given in the paper strengthen the need of the development of knowledge workers through vocational education and training. The Vocational Education Programme in the backdrop can be effective both in the formal system of education through different models suggested and through the non-formal system. The modular courses varying from 50 hours and 2-3 weeks to 6 months or one year can be introduced in the formal system as pre-vocational modules (50-h duration) in IX-X classes in vocational institutions, and the non-governmental organizations/Krishi Vigyan Kendras/Indian Council of Agricultural Research may offer occupation-based modules (2-3 weeks to 6 months). The strategic approach for the development of knowledge system highlighting various issues is also suggested.
Resumo:
An expert system for the elucidation of the structure of organic compounds (ESESOC) has been developed. The heart of the ESESOC is formed by the structure generator as an integral part, which receives the specific type of information (molecular formula, s
Resumo:
水下作业系统是运动学冗余系统,本文将模糊推理方法融入基于任务优先运动学控制算法,对系统载体与机械手进行协调运动分配,同时对系统多个任务进行优化。通过带有3自由度水下机械手的水下作业系统进行算例仿真研究,说明运动控制算法的有效性。
Resumo:
自治潜水器(AUV,Autonomous Underwater Vehicle)是非线性、强耦合、大惯性的多输入多输出系统,又由于受到海流、传感器、执行机构等不确定性的影响,对AUV控制器的鲁棒性能提出了更高的要求。本文针对我国正在研制开发的长航程自治潜水器的特性及其对航行控制的要求,将PID控制与模糊控制的简便性、灵活性以及鲁棒性结合起来,为AUV设计了可在线修改PID参数的自适应模糊PID控制器,仿真结果证明了该种控制方法不但提高了AUV系统的动态特性,而且可在参数摄动和外界扰动时获得较好的控制性能。
Resumo:
研究多移动机器人的运动规划问题.针对机器人模型未知或不精确以及环境的动态变化,提出一种自学习模糊控制器(FLC)来进行准确的速度跟踪.首先通过神经网络的学习训练构造FLC,再由再励学习算法来在线调节FLC的输出,以校正机器人运动状态,实现安全协调避撞
Resumo:
研究多移动机器人的运动规划问题,在实时运动规划专家系统的基础上提出了一种串级模糊控制器,以校正实际工作环境下各机器人的运动状态与理想情况下可能产生的误差,使各机器人正确调整各自运动状态,达到协调工作的目的。
Resumo:
This paper describes BUILD, a computer program which generates plans for building specified structures out of simple objects such as toy blocks. A powerful heuristic control structure enables BUILD to use a number of sophisticated construction techniques in its plans. Among these are the incorporation of pre-existing structure into the final design, pre-assembly of movable sub-structures on the table, and use of the extra blocks as temporary supports and counterweights in the course of construction. BUILD does its planning in a modeled 3-space in which blocks of various shapes and sizes can be represented in any orientation and location. The modeling system can maintain several world models at once, and contains modules for displaying states, testing them for inter-object contact and collision, and for checking the stability of complex structures involving frictional forces. Various alternative approaches are discussed, and suggestions are included for the extension of BUILD-like systems to other domains. Also discussed are the merits of BUILD's implementation language, CONNIVER, for this type of problem solving.
Resumo:
Expert systems are too slow. This work attacks that problem by speeding up a useful system component that remembers facts and tracks down simple consequences. The redesigned component can assimilate new facts more quickly because it uses a compact, grammar-based internal representation to deal with whole classes of equivalent expressions at once. It can support faster hypothetical reasoning because it remembers the consequences of several assumption sets at once. The new design is targeted for situations in which many of the stored facts are equalities. The deductive machinery considered here supplements stored premises with simple new conclusions. The stored premises include permanently asserted facts and temporarily adopted assumptions. The new conclusions are derived by substituting equals for equals and using the properties of the logical connectives AND, Or, and NOT. The deductive system provides supporting premises for its derived conclusions. Reasoning that involves quantifiers is beyond the scope of its limited and automatic operation. The expert system of which the reasoning system is a component is expected to be responsible for overall control of reasoning.
Resumo:
— Consideration of how people respond to the question What is this? has suggested new problem frontiers for pattern recognition and information fusion, as well as neural systems that embody the cognitive transformation of declarative information into relational knowledge. In contrast to traditional classification methods, which aim to find the single correct label for each exemplar (This is a car), the new approach discovers rules that embody coherent relationships among labels which would otherwise appear contradictory to a learning system (This is a car, that is a vehicle, over there is a sedan). This talk will describe how an individual who experiences exemplars in real time, with each exemplar trained on at most one category label, can autonomously discover a hierarchy of cognitive rules, thereby converting local information into global knowledge. Computational examples are based on the observation that sensors working at different times, locations, and spatial scales, and experts with different goals, languages, and situations, may produce apparently inconsistent image labels, which are reconciled by implicit underlying relationships that the network’s learning process discovers. The ARTMAP information fusion system can, moreover, integrate multiple separate knowledge hierarchies, by fusing independent domains into a unified structure. In the process, the system discovers cross-domain rules, inferring multilevel relationships among groups of output classes, without any supervised labeling of these relationships. In order to self-organize its expert system, the ARTMAP information fusion network features distributed code representations which exploit the model’s intrinsic capacity for one-to-many learning (This is a car and a vehicle and a sedan) as well as many-to-one learning (Each of those vehicles is a car). Fusion system software, testbed datasets, and articles are available from http://cns.bu.edu/techlab.
Resumo:
The recognition of 3-D objects from sequences of their 2-D views is modeled by a family of self-organizing neural architectures, called VIEWNET, that use View Information Encoded With NETworks. VIEWNET incorporates a preprocessor that generates a compressed but 2-D invariant representation of an image, a supervised incremental learning system that classifies the preprocessed representations into 2-D view categories whose outputs arc combined into 3-D invariant object categories, and a working memory that makes a 3-D object prediction by accumulating evidence from 3-D object category nodes as multiple 2-D views are experienced. The simplest VIEWNET achieves high recognition scores without the need to explicitly code the temporal order of 2-D views in working memory. Working memories are also discussed that save memory resources by implicitly coding temporal order in terms of the relative activity of 2-D view category nodes, rather than as explicit 2-D view transitions. Variants of the VIEWNET architecture may also be used for scene understanding by using a preprocessor and classifier that can determine both What objects are in a scene and Where they are located. The present VIEWNET preprocessor includes the CORT-X 2 filter, which discounts the illuminant, regularizes and completes figural boundaries, and suppresses image noise. This boundary segmentation is rendered invariant under 2-D translation, rotation, and dilation by use of a log-polar transform. The invariant spectra undergo Gaussian coarse coding to further reduce noise and 3-D foreshortening effects, and to increase generalization. These compressed codes are input into the classifier, a supervised learning system based on the fuzzy ARTMAP algorithm. Fuzzy ARTMAP learns 2-D view categories that are invariant under 2-D image translation, rotation, and dilation as well as 3-D image transformations that do not cause a predictive error. Evidence from sequence of 2-D view categories converges at 3-D object nodes that generate a response invariant under changes of 2-D view. These 3-D object nodes input to a working memory that accumulates evidence over time to improve object recognition. ln the simplest working memory, each occurrence (nonoccurrence) of a 2-D view category increases (decreases) the corresponding node's activity in working memory. The maximally active node is used to predict the 3-D object. Recognition is studied with noisy and clean image using slow and fast learning. Slow learning at the fuzzy ARTMAP map field is adapted to learn the conditional probability of the 3-D object given the selected 2-D view category. VIEWNET is demonstrated on an MIT Lincoln Laboratory database of l28x128 2-D views of aircraft with and without additive noise. A recognition rate of up to 90% is achieved with one 2-D view and of up to 98.5% correct with three 2-D views. The properties of 2-D view and 3-D object category nodes are compared with those of cells in monkey inferotemporal cortex.