1000 resultados para experimental


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A one-dimensional, biphasic, multicomponent steady-state model based on phenomenological transport equations for the catalyst layer, diffusion layer, and polymeric electrolyte membrane has been developed for a liquid-feed solid polymer electrolyte direct methanol fuel cell (SPE- DMFC). The model employs three important requisites: (i) implementation of analytical treatment of nonlinear terms to obtain a faster numerical solution as also to render the iterative scheme easier to converge, (ii) an appropriate description of two-phase transport phenomena in the diffusive region of the cell to account for flooding and water condensation/evaporation effects, and (iii) treatment of polarization effects due to methanol crossover. An improved numerical solution has been achieved by coupling analytical integration of kinetics and transport equations in the reaction layer, which explicitly include the effect of concentration and pressure gradient on cell polarization within the bulk catalyst layer. In particular, the integrated kinetic treatment explicitly accounts for the nonhomogeneous porous structure of the catalyst layer and the diffusion of reactants within and between the pores in the cathode. At the anode, the analytical integration of electrode kinetics has been obtained within the assumption of macrohomogeneous electrode porous structure, because methanol transport in a liquid-feed SPE- DMFC is essentially a single-phase process because of the high miscibility of methanol with water and its higher concentration in relation to gaseous reactants. A simple empirical model accounts for the effect of capillary forces on liquid-phase saturation in the diffusion layer. Consequently, diffusive and convective flow equations, comprising Nernst-Plank relation for solutes, Darcy law for liquid water, and Stefan-Maxwell equation for gaseous species, have been modified to include the capillary flow contribution to transport. To understand fully the role of model parameters in simulating the performance of the DMCF, we have carried out its parametric study. An experimental validation of model has also been carried out. (C) 2003 The Electrochemical Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An experimental investigation on reverse transition from turbulent to laminar flow in a two-dimensional channel was carried out. The reverse transition occurred when Reynolds number of an initially turbulent flow was reduced below a certain value by widening the duct in the lateral direction. The experiments were conducted at Reynolds numbers of 625, 865, 980 and 1250 based on half the height of the channel and the average of the mean velocity. At all these Reynolds numbers the initially turbulent mean velocity profiles tend to become parabolic. The longitudinal and vertical velocity fluctuations ($\overline{u^{\prime 2}}$ and $\overline{v^{\prime 2}}$) averaged over the height of the channel decrease exponentially with distance downstream, but $\overline{u^{\prime}v^{\prime}} $ tends to become zero at a reasonably well-defined point. During reverse transition $\overline{u^{\prime}}\overline{v^{\prime}}/\sqrt{\overline{u^{\prime 2}}}\sqrt{\overline{v^{\prime 2}}}$ also decreases as the flow moves downstream and Lissajous figures taken with u’ and v’ signals confirm this trend. There is approximate similarly between $\overline{u^{\prime 2}} $ profiles if the value of $\overline{u^{\prime 2}_{\max}} $ and the distance from the wall at which it occurs are taken as the reference scales. The spectrum of $\overline{u^{\prime 2}} $ is almost similar at all stations and the non-dimensional spectrum is exponential in wave-number. All the turbulent quantities, when plotted in appropriate co-ordinates, indicate that there is a definite critical Reynolds number of 1400±50 for reverse transition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Structural and electronic properties of C-H center dot center dot center dot O contacts in compounds containing a formyl group are investigated from the perspective of both hydrogen bonding and dipole-dipole interactions, in a systematic and graded approach. The effects of a-substitution and self-association on the nature of the formyl H-atom are studied with the NBO and AIM methodologies. The relative dipole-dipole contributions in formyl C-H center dot center dot center dot O interactions are obtained for aldehyde dimers. The stabilities and energies of aldehyde clusters (dimer through octamer) have been examined computationally. Such studies have an implication in crystallization mechanisms. Experimental X-ray crystal structures of formaldehyde, acrolein and N-methylformamide have been determined in order to ascertain the role of C-H center dot center dot center dot O interactions in the crystal packing of formyl compounds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An attempt has been made to experimentally investigate the fracture process zone (FPZ) using Acoustic Emission (AE) method in High Strength Concrete (HSC) beams subjected to monotonically increasing load. Stress waves are released during the fracture process in materials, which cause acoustic emissions. AE energy released during the fracture of notched HSC beam specimens during Three Point Bend (TPB) tests is measured and is used to investigate the FPZ in the notched HSC beams having 28-day compressive strength of 78.0 MPa. The specimens are tested by Material Testing System (MTS) of 1200 KN capacity employing Crack Mouth Opening Displacement (CMOD) control at the rate of 0.0004 mmlsec in accordance with RILEM recommendations. A brief review on AE technique applied to concrete fracture is presented. The fracture process zone developed and the AE energy released during the fracture process in high strength concrete beam specimens are presented and discussed. It was observed that AE events containing higher energy are located around the notch tip. It may be possible to relate AE energy to fracture energy of concrete.