1000 resultados para espectroscopia no infravermelho
Resumo:
A new method for the preparation of 2-chloro-1,3,2-dioxaphospholane (1) and 2-chloro-4,5-benzo-1,3,2-dioxaphospholane (2), are reported. The modifications introduced in the synthetic route improved the yield and facilitated the control of reaction, but the synthesis require longer reaction time. The compounds were characterized by ¹H, 13C{¹H} and31P{¹H} NMR spectroscopy. Due to the complexity of the spin system AA'BB'X (A, A', B, B' = ¹H; X = 31P) of 2, a simulation of the ¹H NMR spectra was done and it's in agreement with the bibliography.
Resumo:
Optical spectroscopy in the 400-1700nm wavelength range was performed on rare earth doped heavy metal fluoride (HMF) glasses. In the present work In-based fluoride glasses with a fixed 2 mol % YbF3 concentration and an ErF3 content ranging from 0 to 8 mol % were investigated. According to the experimental spectroscopic data a dependence in the absorption coefficient, the photoluminescence intensity and in the radiative lifetime could be verified as a function of the ErF3 content. In addition, at liquid nitrogen temperature, light emission corresponding to indirect transitions in the infrared energy range could be easily observed as a consequence of the low phonon frequency characteristic of this class of fluoride glasses. For all the studied compositions, strong upconversion to the green and red light was observed by pumping these Er3+- and Yb3+-doped HMF glasses with 790 and 980nm photon sources.
Resumo:
The infrared (IR) spectra of the four distict conformers located on the multidimensional potential energy surface (PES) for the 3-phenyl-1,2,3-oxathiazolidine 2-oxide compound have been calculated using the semiempirical quantum-mechanical method PM3. The band spectra are reported and compared directly with the experimental spectrum. The IR intensities are shown to be much more sensitive to conformational changes than the vibrational frequencies and so, the theoretical analysis of the IR spectrum can be used as a tool for helping in the elucidation of the structure of heterocyclic compounds.
Resumo:
This paper is the first part of an article aimed to present theoretical basis as well as some applications of two infrared reflection techniques: specular reflection and reflection-absorption. It is emphasyzed how the Kramers-Krönig analysis of reflection data can be useful in both retrieving optical constants and making spectral analysis possible. Examples of vitreous, powdered and liquid samples are given.
Resumo:
This paper is the second part of an article aimed to present theoretical basis as well as some applications of two infrared reflection techniques: specular reflection and reflection-absorption. It is emphasyzed how much spectral simulation can aid spectral analysis. The usefulness of reflection-absorption spectroscopy as a thin film caracterization technique is stressed. Optical effects such as LO-TO splittings and their observation as Berreman effect are also addressed.
Resumo:
Chloride poisoning is known as having an inhibitor effect in the activity of metal catalysis. In this work in situ infrared spectroscopy (FTIR) of adsorbed carbon monoxide and x-ray photoelectron spectroscopy (XPS) were used to investigate the effect of chloride presence in the electronic metal density in the d subshell of palladium dispersed on alumina. The chloride poisoning effect was interpreted as an electronic effect since a weak back-bonded Pd-CO was formed due to the decrease in the electronic density of the d subshell of palladium, which could be also detected by the higher Pd 3d5/2 binding energy in the chloride presence. A similar poisoning effect was also observed for chloride free Pd/Al2O3 reduced at 500 ºC, and it was interpreted based on the interaction of metal with the alumina surface. The use of molybdena/alumina binary system as support, yield a contrary effect due to the metal-support interaction.
Resumo:
IR bands related to M-C stretchings are not diagnostically significant for the identification of carbonyl groups in the spectra of carbonyl complexes. Otherwise, the frequency, intensity and number of bands for the CO stretchings provide very useful informations about the number of CO ligands and many others structural proprieties, like the presence of bridged CO groups. We report about a relatively simple and useful method for the determination of the CO stretchings of carbonyl complexes, which considers only the bond stretching internal coordinates of the CO groups.
Resumo:
The objective of this work was to accomplish the simultaneous determination of some chemical elements by Energy Dispersive X-ray Fluorescence (EDXRF) Spectroscopy through multivariate calibration in several sample types. The multivariate calibration models were: Back Propagation neural network, Levemberg-Marquardt neural network and Radial Basis Function neural network, fuzzy modeling and Partial Least Squares Regression. The samples were soil standards, plant standards, and mixtures of lead and sulfur salts diluted in silica. The smallest Root Mean Square errors (RMS) were obtained with Back Propagation neural networks, which solved main EDXRF problems in a better way.
Resumo:
Diffusion coefficients provide uniquely detailed and easily interpreted information on molecular organization and phase structure. They are quite sensitive to structural changes, and to binding and association phenomena, in particular for liquid colloidal or macromolecular systems. This paper describes the principles of diffusion measurements in liquids by pulsed magnetic field gradient spin-echo (PFG-SE) NMR spectroscopy. The important PFG-SE technique known as DOSY is presented and discussed. This is a noninvasive technique that can provide individual multicomponent translational diffusion coefficients with good precision in a few minutes, without the need for radioactive isotopic labelling.
Resumo:
Dilutions of methylmetacrylate ranging between 1 and 50 ppm were obtained from a stock solution of 1 ml of monomer in 100 ml of deionised water, and were analyzed by an absorption spectrophotometer in the UV-visible. Absorbance values were used to develop a calibration model based on the PLS, with the aim to determine new sample concentrations. The number of latent variables used was 6, with the standard errors of calibration and prediction found to be 0,048 ml/100 ml and 0,058 ml/100 ml. The calibration model was successfully used to calculate the concentration of monomer released in water, where complete dentures were kept for one hour after polymerization.
Resumo:
This article decribes a simple and systematic method to interpret an infrared spectrum using a flow chart to elucidate the structure of a simple organic compound. It is aimed at undergraduate courses of organic chemistry to make beginners proficient. The proposed flow chart for infrared spectrum interpretation and characterization of organic compounds is suitable for theoretical and experimental courses.
Resumo:
The aim of this study was the determination of the critical micelle concentration (CMC) of the sodium dodecyl sulfate (SDS) surfactant using spectroscopic and conductimetric determinations and to compare these methodologies in the determination of the CMC of different humic acids (HA). The CMC obtained by conductimetric determination was satisfactory. By spectroscopic determination two values of the CMC were obtained for HA. These values can be to due the intra and intermolecular interactions in the HA structure.
Resumo:
This paper presents the basic theory of generalized two-dimensional correlation spectroscopy. This method is applicable to various types of spectroscopy, including Infrared, Near Infrared and Raman Spectroscopy and it emphasizes spectral features not readily observable in conventional one-dimensional spectra. Some applications are cited, including work developed in Brazil.
Resumo:
A threshold photoelectron spectrometer applied to the study of atomic and molecular threshold photoionization processes is described. The spectrometer has been used in conjunction with a toroidal grating monochromator at the National Synchrotron Radiation Laboratory (LNLS), Brazil. It can be tuned to accept threshold electrons (< 20 meV) and work with a power resolution of 716 (~18 meV at 12 eV) with a high signal/noise ratio. The performance of this apparatus and some characteristics of the TGM (Toroidal Grating Monochromator) beam line of LNLS are described and discussed by means of argon, O2 and N2 threshold photoelectron spectra.
Resumo:
This paper discusses different aspects related to the application of electrochemical impedance spectroscopy (EIS) in the study of heterogeneous electrochemical reactions occurring on Dimensionally Stable anodes (DSA®). The most relevant aspects of the semiconductor/electrolyte interface, the application of the EIS classical equivalent circuit approach and the ac porous model in DSA are presented. The paper shows that DSA type electrodes can be consistently investigated by using the ac porous model and an analysis is presented showing the advantage of applying this kind of approach to study heterogeneous reactions on DSA electrodes. Furthermore, some preliminary results on Ti/Ru0,3Ti(0,7-x)Sn x O2 based electrodes are presented to exemplify the use of the ac porous model analysis.