943 resultados para engineering, electrical


Relevância:

60.00% 60.00%

Publicador:

Resumo:

 With the rising demands on cloud services, the electricity consumption has been increasing drastically as the main operational expenditure (OPEX) to data center providers. The geographical heterogeneity of electricity prices motivates us to study the task placement problem over geo-distributed data centers. We exploit the dynamic frequency scaling technique and formulate an optimization problem that minimizes OPEX while guaranteeing the quality-of-service, i.e., the expected response time of tasks. Furthermore, an optimal solution is discovered for this formulated problem. The experimental results show that our proposal achieves much higher cost-efficiency than the traditional resizing scheme, i.e., by activating/deactivating certain servers in data centers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Given a set of events and a set of robots, the dispatch problem is to allocate one robot for each event to visit it. In a single round, each robot may be allowed to visit only one event (matching dispatch), or several events in a sequence (sequence dispatch). In a distributed setting, each event is discovered by a sensor and reported to a robot. Here, we present novel algorithms aimed at overcoming the shortcomings of several existing solutions. We propose pairwise distance based matching algorithm (PDM) to eliminate long edges by pairwise exchanges between matching pairs. Our sequence dispatch algorithm (SQD) iteratively finds the closest event-robot pair, includes the event in dispatch schedule of the selected robot and updates its position accordingly. When event-robot distances are multiplied by robot resistance (inverse of the remaining energy), the corresponding energy-balanced variants are obtained. We also present generalizations which handle multiple visits and timing constraints. Our localized algorithm MAD is based on information mesh infrastructure and local auctions within the robot network for obtaining the optimal dispatch schedule for each robot. The simulations conducted confirm the advantages of our algorithms over other existing solutions in terms of average robot-event distance and lifetime.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In cyber physical system (CPS), computational resources and physical resources are strongly correlated and mutually dependent. Cascading failures occur between coupled networks, cause the system more fragile than single network. Besides widely used metric giant component, we study small cluster (small component) in interdependent networks after cascading failures occur. We first introduce an overview on how small clusters distribute in various single networks. Then we propose a percolation theory based mathematical method to study how small clusters be affected by the interdependence between two coupled networks. We prove that the upper bounds exist for both the fraction and the number of operating small clusters. Without loss of generality, we apply both synthetic network and real network data in simulation to study small clusters under different interdependence models and network topologies. The extensive simulations highlight our findings: except the giant component, considerable proportion of small clusters exists, with the remaining part fragmenting to very tiny pieces or even massive isolated single vertex; no matter how the two networks are tightly coupled, an upper bound exists for the size of small clusters. We also discover that the interdependent small-world networks generally have the highest fractions of operating small clusters. Three attack strategies are compared: Inter Degree Priority Attack, Intra Degree Priority Attack and Random Attack. We observe that the fraction of functioning small clusters keeps stable and is independent from the attack strategies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In recent years, we have witnessed substantial exploitation of real-time streaming applications, such as video surveillance system on road crosses of a city. So far, real world applications mainly rely on the traditional well-known client-server and peer-to-peer schemes as the fundamental mechanism for communication. However, due to the limited resources on each terminal device in the applications, these two schemes cannot well leverage the processing capability between the source and destination of the video traffic, which leads to limited streaming services. For this reason, many QoS sensitive application cannot be supported in the real world. In this paper, we are motivated to address this problem by proposing a novel multi-server based framework. In this framework, multiple servers collaborate with each other to form a virtual server (also called cloud-server), and provide high-quality services such as real-time streams delivery and storage. Based on this framework, we further introduce a (1-?) approximation algorithm to solve the NP-complete "maximum services"(MS) problem with the intention of handling large number of streaming flows originated by networks and maximizing the total number of services. Moreover, in order to backup the streaming data for later retrieval, based on the framework, an algorithm is proposed to implement backups and maximize streaming flows simultaneously. We conduct a series of experiments based on simulations to evaluate the performance of the newly proposed framework. We also compare our scheme to several traditional solutions. The results suggest that our proposed scheme significantly outperforms the traditional solutions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Functional observer design for Multi-Input Multi-Output (MIMO) Linear Time-Invariant (LTI) systems with multiple mixed time delays in the states of the system is addressed. Two structures for the design of a minimum-order observer are considered: 1 - delay-dependent, and 2 - internal-delay independent. The parameters of the delay-dependent observer are designed using the Lyapunov Krasovskii approach. The delay-dependent exponential stability of the observer for a specified convergence rate and delay values is guaranteed upon the feasibility of a set of Linear Matrix Inequalities (LMIs) together with a rank condition. Using the descriptor transformation, a modified Jensen's inequality, and improved Park's inequality, the results can be less conservative than the available functional observer design methods that address LTI systems with single state delay. Furthermore, the necessary and sufficient conditions of the asymptotic stability of the internal-delay independent observer are obtained, which are shown to be independent of delay. Two illustrative numerical examples and simulation studies confirm the validity and highlight the performance of the proposed theoretical achievements.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

With the increasing popularity of utility-oriented computing where the resources are traded as services, efficient management of quality of service (QoS) has become increasingly significant to both service consumers and service providers. In the context of distributed multimedia content adaptation deployment on service-oriented computing, how to ensure the stringent QoS requirements of the content adaptation is a significant and immediate challenge. However, QoS guarantees in the distributed multimedia content adaptation deployment on service-oriented platform context have not been accorded the attention it deserves. In this paper, we address this problem. We formulate the SLA management for distributed multimedia content adaptation deployment on service-oriented computing as an integer programming problem. We propose an SLA management framework that enables the service provider to determine deliverable QoS before settling SLA with potential service consumers to optimize QoS guarantees. We analyzed the performance of the proposed strategy under various conditions in terms of the SLA success rate, rejection rate and impact of the resource data errors on potential violation of the agreed upon SLA. We also compared the proposed SLA management framework with a baseline approach in which the distributed multimedia content adaptation is deployed on a service-oriented platform without SLA consideration. The results of the experiments show that the proposed SLA management framework substantially outperforms the baseline approach confirming that SLA management is a core requirement for the deployment of distributed multimedia content adaptation on service-oriented systems.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Over the past decade, the growing demand of Grid-connected photo voltaic (GCPV) system has been increasing due to an extensive use of renewable energy technologies for sustainable power generation and distribution. High-penetrated GCPV systems enhance the operation of the network by improving the voltage levels and reducing the active power losses along the length of the feeder. This paper aims to investigate the voltage variations and Total Harmonic Distortion (THD) of a typical GCPV system modelled in Power system simulator, PSS SINCAL with the change of level of PV integrations in a Low Voltage (LV) distribution network. Five different case studies are considered to investigate the impact of PV integrations on LV nodes and the corresponding voltage variations and harmonics. In addition, this paper also explores and benchmarks the voltage improvement techniques by implementing On Load Tap Changer (OLTC) with respective to the main transformer and addition of Shunt Capacitor (SC) at appropriate node points in LV network,

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In a machine-to-machine network, the throughput performance plays a very important role. Recently, an attractive energy harvesting technology has shown great potential to the improvement of the network throughput, as it can provide consistent energy for wireless devices to transmit data. Motivated by that, an efficient energy harvesting-based medium access control (MAC) protocol is designed in this paper. In this protocol, different devices first harvest energy adaptively and then contend the transmission opportunities with energy level related priorities. Then, a new model is proposed to obtain the optimal throughput of the network, together with the corresponding hybrid differential evolution algorithm, where the involved variables are energy-harvesting time, contending time, and contending probability. Analytical and simulation results show that the network based on the proposed MAC protocol has greater throughput than that of the traditional methods. In addition, as expected, our scheme has less transmission delay, further enhancing its superiority.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Feature based camera model identification plays an important role for forensics investigations on images. The conventional feature based identification schemes suffer from the problem of unknown models, that is, some images are captured by the camera models previously unknown to the identification system. To address this problem, we propose a new scheme: Source Camera Identification with Unknown models (SCIU). It has the capability of identifying images of the unknown models as well as distinguishing images of the known models. The new SCIU scheme consists of three stages: 1) unknown detection; 2) unknown expansion; and 3) (K+1)-class classification. Unknown detection applies a k-nearest neighbours method to recognize a few sample images of unknown models from the unlabeled images. Unknown expansion further extends the set of unknown sample images using a self-training strategy. Then, we address a specific (K+1)-class classification, in which the sample images of unknown (1-class) and known models (K-class) are combined to train a classifier. In addition, we develop a parameter optimization method for unknown detection, and investigate the stopping criterion for unknown expansion. The experiments carried out on the Dresden image collection confirm the effectiveness of the proposed SCIU scheme. When unknown models present, the identification accuracy of SCIU is significantly better than the four state-of-art methods: 1) multi-class Support Vector Machine (SVM); 2) binary SVM; 3) combined classification framework; and 4) decision boundary carving.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cloud computing is proposed as an open and promising computing paradigm where customers can deploy and utilize IT services in a pay-as-you-go fashion while saving huge capital investment in their own IT infrastructure. Due to the openness and virtualization, various malicious service providers may exist in these cloud environments, and some of them may record service data from a customer and then collectively deduce the customer's private information without permission. Therefore, from the perspective of cloud customers, it is essential to take certain technical actions to protect their privacy at client side. Noise obfuscation is an effective approach in this regard by utilizing noise data. For instance, noise service requests can be generated and injected into real customer service requests so that malicious service providers would not be able to distinguish which requests are real ones if these requests' occurrence probabilities are about the same, and consequently related customer privacy can be protected. Currently, existing representative noise generation strategies have not considered possible fluctuations of occurrence probabilities. In this case, the probability fluctuation could not be concealed by existing noise generation strategies, and it is a serious risk for the customer's privacy. To address this probability fluctuation privacy risk, we systematically develop a novel time-series pattern based noise generation strategy for privacy protection on cloud. First, we analyze this privacy risk and present a novel cluster based algorithm to generate time intervals dynamically. Then, based on these time intervals, we investigate corresponding probability fluctuations and propose a novel time-series pattern based forecasting algorithm. Lastly, based on the forecasting algorithm, our novel noise generation strategy can be presented to withstand the probability fluctuation privacy risk. The simulation evaluation demonstrates that our strategy can significantly improve the effectiveness of such cloud privacy protection to withstand the probability fluctuation privacy risk.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper investigates the robust and accurate capture of human joint poses and bio-kinematic movements for exercise monitoring in real-time tele-rehabilitation applications. Recently developed model-based estimation ideas are used to improve the accuracy, robustness, and real-time characteristics considered vital for applications, where affordability and domestic use are the primary focus. We use the spatial diversity of the arbitrarily positioned Microsoft Kinect receivers to improve the reliability and promote the uptake of the concept. The skeleton-based information is fused to enhance accuracy and robustness, critical for biomedical applications. A specific version of a robust Kalman filter (KF) in a linear framework is employed to ensure superior estimator convergence and real-time use, compared to other commonly used filters. The algorithmic development was conducted in a generic form and computer simulations were conducted to verify our assertions. Hardware implementations were carried out to test the viability of the proposed state estimator in terms of the core requirements of reliability, accuracy, and real-time use. Performance of the overall system implemented in an information fusion context was evaluated against the commercially available and industry standard Vicon system for different exercise routines, producing comparable results with much less infrastructure and financial investment.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, the problem of distributed functional state observer design for a class of large-scale interconnected systems in the presence of heterogeneous time-varying delays in the interconnections and the local state vectors is considered. The resulting observer scheme is suitable for strongly coupled subsystems with multiple time-varying delays, and is shown to give better results for systems with very strong interconnections while only some mild existence conditions are imposed. A set of existence conditions are derived along with a computationally simple observer constructive procedure. Based on the Lyapunov-Krasovskii functional method (LKF) in the framework of linear matrix inequalities (LMIs), delay-dependent conditions are derived to obtain the observer parameters ensuring the exponential convergence of the observer error dynamics. The effectiveness of the obtained results is illustrated and tested through a numerical example of a three-area interconnected system.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents a novel common functional observer scheme for three systems with unknown inputs. The scheme uses three observers in cascade with two logic switches. The existence conditions of the scheme are investigated and presented in terms of the original system matrices. Significantly, the conditions allow the observers to be designed independently of each other which greatly simplify the design process, and also serve as a basis of comparison for future development of common functional observer schemes. A numerical example is given to illustrate the effectiveness of the proposed scheme.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this study, the authors address a new problem of finding, with a pre-specified time, bounds of partial states of non-linear discrete systems with a time-varying delay. A novel computational method for deriving the smallest bounds is presented. The method is based on a new comparison principle, a new algorithm for finding the infimum of a fractal function, and linear programming. The effectiveness of our obtained results is illustrated through a numerical example.