958 resultados para elliptic curves
Resumo:
Mode of access: Internet.
Resumo:
With: Higher geometry and mensuration / by Nathan Scholfield.
Resumo:
Cover title.
Resumo:
Includes "References".
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
The goal of this paper is to study the multiplicity of positive solutions of a class of quasilinear elliptic equations. Based on the mountain pass theorems and sub-and supersolutions argument for p-Laplacian operators, under suitable conditions on nonlinearity f (x, s), we show the following problem: -Delta(p)u = lambda f(x,u) in Omega, u/(partial derivative Omega) = 0, where Omega is a bounded open subset of R-N, N >= 2, with smooth boundary, lambda is a positive parameter and Delta(p) is the p-Laplacian operator with p > 1, possesses at least two positive solutions for large lambda.
Resumo:
The central elements of the algebra of monodromy matrices associated with the Z(n) R-matrix are studied. When the crossing parameter w takes a special rational value w = n/N, where N and n are positive coprime integers, the center is substantially larger than that in the generic case for which the quantum determinant provides the center. In the trigonometric limit, the situation corresponds to the quantum group at roots of unity. This is a higher rank generalization of the recent results by Belavin and Jimbo. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
We develop results for bifurcation from the principal eigenvalue for certain operators based on the p-Laplacian and containing a superlinear nonlinearity with a critical Sobolev exponent. The main result concerns an asymptotic estimate of the rate at which the solution branch departs from the eigenspace. The method can also be applied for nonpotential operators.
Resumo:
Species accumulation curves (SACs) chart the increase in recovery of new species as a function of some measure of sampling effort. Studies of parasite diversity can benefit from the application of SACs, both as empirical tools to guide sampling efforts and predict richness, and because their properties are informative about community patterns and the structure of parasite diversity. SACs can be used to infer interactivity in parasite infra-communities, to partition species richness into contributions from different spatial scales and different levels of the host hierarchy (individuals, populations and communities) or to identify modes of community assembly (niche versus dispersal). A historical tendency to treat individual hosts as statistically equivalent replicates (quadrats) seemingly satisfies the sample-based subgroup of SACs but care is required in this because of the inequality of hosts as sampling units. Knowledge of the true distribution of parasite richness over multiple host-derived and spatial scales is far from complete but SACs can improve the understanding of diversity patterns in parasite assemblages.
Resumo:
Traditionally, machine learning algorithms have been evaluated in applications where assumptions can be reliably made about class priors and/or misclassification costs. In this paper, we consider the case of imprecise environments, where little may be known about these factors and they may well vary significantly when the system is applied. Specifically, the use of precision-recall analysis is investigated and compared to the more well known performance measures such as error-rate and the receiver operating characteristic (ROC). We argue that while ROC analysis is invariant to variations in class priors, this invariance in fact hides an important factor of the evaluation in imprecise environments. Therefore, we develop a generalised precision-recall analysis methodology in which variation due to prior class probabilities is incorporated into a multi-way analysis of variance (ANOVA). The increased sensitivity and reliability of this approach is demonstrated in a remote sensing application.