872 resultados para dynamic and static qualities
Resumo:
Liposomes due to their biphasic characteristic and diversity in design, composition and construction, offer a dynamic and adaptable technology for enhancing drug solubility. Starting with equimolar egg-phosphatidylcholine (PC)/cholesterol liposomes, the influence of the liposomal composition and surface charge on the incorporation and retention of a model poorly water soluble drug, ibuprofen was investigated. Both the incorporation and the release of ibuprofen were influenced by the lipid composition of the multi-lamellar vesicles (MLV) with inclusion of the long alkyl chain lipid (dilignoceroyl phosphatidylcholine (C 24PC)) resulting in enhanced ibuprofen incorporation efficiency and retention. The cholesterol content of the liposome bilayer was also shown to influence ibuprofen incorporation with maximum ibuprofen incorporation efficiency achieved when 4 μmol of cholesterol was present in the MLV formulation. Addition of anionic lipid dicetylphosphate (DCP) reduced ibuprofen drug loading presumably due to electrostatic repulsive forces between the carboxyl group of ibuprofen and the anionic head-group of DCP. In contrast, the addition of 2 μmol of the cationic lipid stearylamine (SA) to the liposome formulation (PC:Chol - 16 μmol:4 μmol) increased ibuprofen incorporation efficiency by approximately 8%. However further increases of the SA content to 4 μmol and above reduced incorporation by almost 50% compared to liposome formulations excluding the cationic lipid. Environmental scanning electron microscopy (ESEM) was used to dynamically follow the changes in liposome morphology during dehydration to provide an alternative assay of liposome stability. ESEM analysis clearly demonstrated that ibuprofen incorporation improved the stability of PC:Chol liposomes as evidenced by an increased resistance to coalescence during dehydration. These finding suggest a positive interaction between amphiphilic ibuprofen molecules and the bilayer structure of the liposome. © 2004 Elsevier B.V. All rights reserved.
Resumo:
The motorsport industry is a high value-added and highly innovative business sector. The UK’s leading racing car manufacturers are world class centres of research, development and engineering. However, individual firms in the sector do not have the range and depth of capabilities to compete independently in motorsport’s dynamic and competitive environment. Industry attention has therefore progressively focused on how networks of collaborating firms can work together to develop new products, improve business processes and reduce costs. This report presents findings from a three year Cardiff Business School study which examined the ways in which firms collaborate as part of wider networks. The research involved gathering data from over 120 firms in the UK and Italian motorsport sectors.
Resumo:
The transport of a spherical solute through a long circular cylindrical pore filled with an electrolyte solution is studied numerically, in the presence of constant surface charge on the solute and the pore wall. Fluid dynamic analyses were carried out to calculate the flow field around the solute in the pore to evaluate the drag coefficients exerted on the solute. Electrical potentials around the solute in the electrolyte solution were computed based on a mean-field theory to provide the interaction energy between the charged solute and the pore wall. Combining the results of the fluid dynamic and electrostatic analyses, we estimated the rate of the diffusive and convective transport of the solute across the pore. Although the present estimates of the drag coefficients on the solute suggest more than 10% difference from existing studies, depending on the radius ratio of the solute relative to the pore and the radial position of the solute center in the pore, this difference leads to a minor effect on the hindrance factors. It was found that even at rather large ion concentrations, the repulsive electrostatic interaction between the charged solute and the pore wall of like charge could significantly reduce the transport rate of the solute.
Resumo:
This paper introduces a joint load balancing and hotspot mitigation protocol for mobile ad-hoc network (MANET) termed by us as 'load_energy balance + hotspot mitigation protocol (LEB+HM)'. We argue that although ad-hoc wireless networks have limited network resources - bandwidth and power, prone to frequent link/node failures and have high security risk; existing ad hoc routing protocols do not put emphasis on maintaining robust link/node, efficient use of network resources and on maintaining the security of the network. Typical route selection metrics used by existing ad hoc routing protocols are shortest hop, shortest delay, and loop avoidance. These routing philosophy have the tendency to cause traffic concentration on certain regions or nodes, leading to heavy contention, congestion and resource exhaustion which in turn may result in increased end-to-end delay, packet loss and faster battery power depletion, degrading the overall performance of the network. Also in most existing on-demand ad hoc routing protocols intermediate nodes are allowed to send route reply RREP to source in response to a route request RREQ. In such situation a malicious node can send a false optimal route to the source so that data packets sent will be directed to or through it, and tamper with them as wish. It is therefore desirable to adopt routing schemes which can dynamically disperse traffic load, able to detect and remove any possible bottlenecks and provide some form of security to the network. In this paper we propose a combine adaptive load_energy balancing and hotspot mitigation scheme that aims at evenly distributing network traffic load and energy, mitigate against any possible occurrence of hotspot and provide some form of security to the network. This combine approach is expected to yield high reliability, availability and robustness, that best suits any dynamic and scalable ad hoc network environment. Dynamic source routing (DSR) was use as our underlying protocol for the implementation of our algorithm. Simulation comparison of our protocol to that of original DSR shows that our protocol has reduced node/link failure, even distribution of battery energy, and better network service efficiency.
Resumo:
We have investigated numerically and experimentally a fiber Bragg grating (FBG) sensor interrogation scheme utilizing a linear chirped grating-based Sagnac loop as a wavelength-dependent receiver. The scheme is suitable for both static and dynamic sensor interrogation with advantages of stable and linear readout response and easily-adjustable sensing resolution and dynamic range. Static and dynamic strain resolutions as high as ± 4.2 με and 0.406 με/√ Hz have been demonstrated using this scheme.
Resumo:
Growth of complexity and functional importance of integrated navigation systems (INS) leads to high losses at the equipment refusals. The paper is devoted to the INS diagnosis system development, allowing identifying the cause of malfunction. The proposed solutions permit taking into account any changes in sensors dynamic and accuracy characteristics by means of the appropriate error models coefficients. Under actual conditions of INS operation, the determination of current values of the sensor models and estimation filter parameters rely on identification procedures. The results of full-scale experiments are given, which corroborate the expediency of INS error models parametric identification in bench test process.
Resumo:
Permanent magnet synchronous motors (PMSMs) provide a competitive technology for EV traction drives owing to their high power density and high efficiency. In this paper, three types of interior PMSMs with different PM arrangements are modeled by the finite element method (FEM). For a given amount of permanent magnet materials, the V shape interior PMSM is found better than the U-shape and the conventional rotor topologies for EV traction drives. Then the V shape interior PMSM is further analyzed with the effects of stator slot opening and the permanent magnet pole chamfering on cogging torque and output torque performance. A vector-controlled flux-weakening method is developed and simulated in matlab to expand the motor speed range for EV drive system. The results show good dynamic and steady-state performance with a capability of expanding speed up to 4 times of the rated. A prototype of the V shape interior PMSM is also manufactured and tested to validate the numerical models built by the finite element method.
Resumo:
A kooperatív játékelmélet egyik legjelentősebb eredménye, hogy számos konfliktushelyzetben stabil megoldást nyújt. Ez azonban csak statikus és determinisztikus környezetben alkalmazható jól. Most megmutatjuk a mag egy olyan kiterjesztését - a gyenge szekvenciális magot -, amely képes valós, dinamikus, bizonytalan környezetben is eligazítást nyújtani. A megoldást a csődjátékok példájára alkalmazzuk, és segítségével megvizsgáljuk, hogy a pénzügyi irodalom ismert elosztási szabályai közül melyek vezetnek stabil, fenntartható eredményre. _______ One of the most important achievements of cooperative game theory is to provide a stable solution to numerous conflicts. The solutions it presents, on the other hand, have been limited to situations in a static, deterministic environment. The paper examines how the core can be extended to a more realistic, dynamic and uncertain scenario. The bankruptcy games studied are ones where the value of the estate and of the claims are stochastic, and a Weak Sequential Core is used as the solution concept for them. The author tests the stability of a number of well known division rules in this stochastic setting and finds that most are unstable, except for the Constrained Equal Awards rule, which is the only one belonging to the Weak Sequential Core.
Resumo:
We studied the development of leaf characters in two Southeast Asian dipterocarp forest trees under different photosynthetic photon flux densities (PFD) and spectral qualities (red to far-red, R:FR). The two species, Hopea helferi and H. odorata, are taxonomically closely related but differ in their ecological requirements; H. helferi is more drought tolerant and H. odorata more shade tolerant. Seedlings were grown in replicated shadehouse treatments of differing PFD and R:FR. We measured or calculated (1) leaf and tissue thicknesses; (2) mesophyll parenchyma, air space, and lignified tissue volumes; (3) mesophyll air volumes (Vmes/Asurf) and surfaces (Ames/Asurf); (4) palisade cell length and width; (5) chlorophyll/cm2 and a/ b; (6) leaf absorption; and (7) attenuance/absorbance at 652 and 550 nm. These characters varied in response to light conditions in both taxa. Characters were predominantly affected by PFD, and R:FR slightly influenced many characters. Leaf characters of H. odorata were more plastic in response to treatment conditions. Characters were correlated with each other in a complex fashion. Variation in leaf anatomy is most likely a consequence of increasing leaf thickness in both taxa, which may increase mechanical strength and defense against herbivory in more exposed environments. Variation in leaf optical properties was most likely affected by pigment photo-bleaching in treatments of more intense PFD and was not correlated with Amax. The greater plasticity of leaf responses in H. odorata helps explain the acclimation over the range of light conditions encountered by this shade-tolerant taxon. The dense layer of scales on the leaf undersurface and other anatomical characters in H. helferi reduced gas exchange and growth in this drought-tolerant tree.
Resumo:
Current reform initiatives recommend that geometry instruction include the study of three-dimensional geometric objects and provide students with opportunities to use spatial skills in problem-solving tasks. Geometer's Sketchpad (GSP) is a dynamic and interactive computer program that enables the user to investigate and explore geometric concepts and manipulate geometric structures. Research using GSP as an instructional tool has focused primarily on teaching and learning two-dimensional geometry. This study explored the effect of a GSP based instructional environment on students' geometric thinking and three-dimensional spatial ability as they used GSP to learn three-dimensional geometry. For 10 weeks, 18 tenth-grade students from an urban school district used GSP to construct and analyze dynamic, two-dimensional representations of three-dimensional objects in a classroom environment that encouraged exploration, discussion, conjecture, and verification. The data were collected primarily from participant observations and clinical interviews and analyzed using qualitative methods of analysis. In addition, pretest and posttest measures of three-dimensional spatial ability and van Hiele level of geometric thinking were obtained. Spatial ability measures were analyzed using standard t-test analysis. ^ The data from this study indicate that GSP is a viable tool to teach students about three-dimensional geometric objects. A comparison of students' pretest and posttest van Hiele levels showed an improvement in geometric thinking, especially for students on lower levels of the van Hiele theory. Evidence at the p < .05 level indicated that students' spatial ability improved significantly. Specifically, the GSP dynamic, visual environment supported students' visualization and reasoning processes as students attempted to solve challenging tasks about three-dimensional geometric objects. The GSP instructional activities also provided students with an experiential base and an intuitive understanding about three-dimensional objects from which more formal work in geometry could be pursued. This study demonstrates that by designing appropriate GSP based instructional environments, it is possible to help students improve their spatial skills, develop more coherent and accurate intuitions about three-dimensional geometric objects, and progress through the levels of geometric thinking proposed by van Hiele. ^
Resumo:
Current reform initiatives recommend that school geometry teaching and learning include the study of three-dimensional geometric objects and provide students with opportunities to use spatial abilities in mathematical tasks. Two ways of using Geometer's Sketchpad (GSP), a dynamic and interactive computer program, in conjunction with manipulatives enable students to investigate and explore geometric concepts, especially when used in a constructivist setting. Research on spatial abilities has focused on visual reasoning to improve visualization skills. This dissertation investigated the hypothesis that connecting visual and analytic reasoning may better improve students' spatial visualization abilities as compared to instruction that makes little or no use of the connection of the two. Data were collected using the Purdue Spatial Visualization Tests (PSVT) administered as a pretest and posttest to a control and two experimental groups. Sixty-four 10th grade students in three geometry classrooms participated in the study during 6 weeks. Research questions were answered using statistical procedures. An analysis of covariance was used for a quantitative analysis, whereas a description of students' visual-analytic processing strategies was presented using qualitative methods. The quantitative results indicated that there were significant differences in gender, but not in the group factor. However, when analyzing a sub sample of 33 participants with pretest scores below the 50th percentile, males in one of the experimental groups significantly benefited from the treatment. A review of previous research also indicated that students with low visualization skills benefited more than those with higher visualization skills. The qualitative results showed that girls were more sophisticated in their visual-analytic processing strategies to solve three-dimensional tasks. It is recommended that the teaching and learning of spatial visualization start in the middle school, prior to students' more rigorous mathematics exposure in high school. A duration longer than 6 weeks for treatments in similar future research studies is also recommended.
Resumo:
In the article - Past, Present, and Future: The Food Service Industry and Its Changes - by Brother Herman E. Zaccarelli, International Director, Restaurant, Hotel and Institutional Management Institute at Purdue University, Brother Zaccarelli initially states: “Educators play an important role in the evolution of the food service industry. The author discusses that evolution and suggests how educators can be change agents along with management in that evolutionary progression.” The author goes on to wax philosophically, as well as speak generically about the food service industry; to why it offers fascinating and rewarding careers. Additionally, he writes about the influence educators have on students in this regard. “Educators can speak about how the food service industry has benefited them both personally and professionally,” says Brother Zaccarelli. “We get excited about alerting students to the many opportunities and, in fact, serve as “salespersons” for the industry to whoever (school administrators, legislators, and peers in the educational institution) will listen.” Brother Zaccarelli also speaks to growth and changes in food service, and even more importantly about the people and faces behind everything that food service, and hospitality in general comprise. The author will have you know, that people are what drive an educator. “What makes the food service industry so great? At the heart of this question's answer is people: the people whom it serves in institutional and commercial operations of all types; the people who work within it; the people who provide the goods, services, and equipment to it; the people who study it,” says Brother Zaccarelli. “All of these groups have, of course, a vested personal and/or professional interest in seeing our industry improve.” Another concept the author would like you to absorb, and it’s even more so true today than yesterday, is the prevalence of convergence and divergence within food service. For food service and beyond, it is the common denominators and differences that make the hospitality-food service industry so dynamic and vibrant. These are the winds of change presented to an educator who wants to have a positive impact on students. The author warns that the many elements involved in the food service industry conspire to erode quality of service in an industry that is also persistently expanding, and whose cornerstone principles are underpinned by service itself. “The three concerns addressed - quality, employees, and marketing - are intimately related,” Brother Zaccarelli says in stripping-down the industry to bare essentials. He defines and addresses the issues related to each with an eye toward how education can reconcile said issues.
Resumo:
Over the past five years, XML has been embraced by both the research and industrial community due to its promising prospects as a new data representation and exchange format on the Internet. The widespread popularity of XML creates an increasing need to store XML data in persistent storage systems and to enable sophisticated XML queries over the data. The currently available approaches to addressing the XML storage and retrieval issue have the limitations of either being not mature enough (e.g. native approaches) or causing inflexibility, a lot of fragmentation and excessive join operations (e.g. non-native approaches such as the relational database approach). ^ In this dissertation, I studied the issue of storing and retrieving XML data using the Semantic Binary Object-Oriented Database System (Sem-ODB) to leverage the advanced Sem-ODB technology with the emerging XML data model. First, a meta-schema based approach was implemented to address the data model mismatch issue that is inherent in the non-native approaches. The meta-schema based approach captures the meta-data of both Document Type Definitions (DTDs) and Sem-ODB Semantic Schemas, thus enables a dynamic and flexible mapping scheme. Second, a formal framework was presented to ensure precise and concise mappings. In this framework, both schemas and the conversions between them are formally defined and described. Third, after major features of an XML query language, XQuery, were analyzed, a high-level XQuery to Semantic SQL (Sem-SQL) query translation scheme was described. This translation scheme takes advantage of the navigation-oriented query paradigm of the Sem-SQL, thus avoids the excessive join problem of relational approaches. Finally, the modeling capability of the Semantic Binary Object-Oriented Data Model (Sem-ODM) was explored from the perspective of conceptually modeling an XML Schema using a Semantic Schema. ^ It was revealed that the advanced features of the Sem-ODB, such as multi-valued attributes, surrogates, the navigation-oriented query paradigm, among others, are indeed beneficial in coping with the XML storage and retrieval issue using a non-XML approach. Furthermore, extensions to the Sem-ODB to make it work more effectively with XML data were also proposed. ^
Resumo:
The theoretical construct of control has been defined as necessary (Etzioni, 1965), ubiquitous (Vickers, 1967), and on-going (E. Langer, 1983). Empirical measures, however, have not adequately given meaning to this potent construct, especially within complex organizations such as schools. Four stages of theory-development and empirical testing of school building managerial control using principals and teachers working within the nation's fourth largest district are presented in this dissertation as follows: (1) a review and synthesis of social science theories of control across the literatures of organizational theory, political science, sociology, psychology, and philosophy; (2) a systematic analysis of school managerial activities performed at the building level within the context of curricular and instructional tasks; (3) the development of a survey questionnaire to measure school building managerial control; and (4) initial tests of construct validity including inter-item reliability statistics, principal components analyses, and multivariate tests of significance. The social science synthesis provided support of four managerial control processes: standards, information, assessment, and incentives. The systematic analysis of school managerial activities led to further categorization between structural frequency of behaviors and discretionary qualities of behaviors across each of the control processes and the curricular and instructional tasks. Teacher survey responses (N=486) reported a significant difference between these two dimensions of control, structural frequency and discretionary qualities, for standards, information, and assessments, but not for incentives. The descriptive model of school managerial control suggests that (1) teachers perceive structural and discretionary managerial behaviors under information and incentives more clearly than activities representing standards or assessments, (2) standards are primarily structural while assessments are primarily qualitative, (3) teacher satisfaction is most closely related to the equitable distribution of incentives, (4) each of the structural managerial behaviors has a qualitative effect on teachers, and that (5) certain qualities of managerial behaviors are perceived by teachers as distinctly discretionary, apart from school structure. The variables of teacher tenure and school effectiveness reported significant effects on school managerial control processes, while instructional levels (elementary, junior, and senior) and individual school differences were not found to be significant for the construct of school managerial control.
Resumo:
This Thesis comprises a theoretical study about the influence of the magnetocrystalline anisotropy on the static and dynamic magnetic properties of nanofilms: monolayers and trilayers coupled through the bilinear and biquadratic exchange fields, for situations in which the systems are grown in unusual [hkl] asymmetric directions. Using a theory based on a realistic phenomenological model for description of nanometric systems, we consider the total free magnetic energy including the Zeeman interaction, cubic and uniaxial anisotropies, demagnetizing and surface anysotropy energies, as well as the exchange terms. Numerical calculations are conducted by minimizing the total magnetic energy from the determination of equilibrium static configurations. We consider experimental parameters found in the literature to illustrate our results for Fe/Cr/Fe trilayer systems. In particular, a total of six different magnetic scenarios are analyzed for three regimens of exchange fields and the [211] and [321] asymmetric growth directions. After numerically minimize the total energy, we use the equilibrium configurations to calculate magnetization and magnetoresistance curves with the respective magnetic phases and corresponding critical fields. These results are also used to establish the boundary for occurrence of saturated states. Within the context of the spin waves, we solve the equation of motion for these systems in order to find the respective associated dispersion relations. The results show similar magnetization and magnetoresistance curves for both [211] and [321] growth scenarios, including an equivalent magnetic transition behavior. However, the combination of those peculiar symmetries and influence of the exchange energies results in attractive properties, including the generation of magnetic states as a function of the asymmetric degree imposed in the [hkl] growth orientations. There is also an increasing incompatibility between the values of saturation fields of magnetization and magnetoresistance for the cases in which a magnetic field acts along intermediate cubic anisotropic axes, particularly in the situations where the bilinear and biquadratic exchange fields are comparable. The dispersion relations and static results are consistent, the corresponding magnetic states are also present in both acoustic and optical modes. Furthermore, Goldstone excitations are also observed for that particular cases of a magnetic field acting in the intermediate axes, an effect related to transitions of second order and to the spontaneous symmetry breaking imposed by the combination of the biquadratic energy with the cubic and uniaxial anisotropies.