999 resultados para ducks, cross tile, floral decoration
Resumo:
The present work describes the tensile flow and work hardening behavior of a high strength 7010 aluminum alloy by constitutive relations. The alloy has been hot rolled by three different cross-rolling schedules. Room temperature tensile properties have been evaluated as a function of tensile axis orientation in the as-hot rolled as well as peak aged conditions. It is found that both the Ludwigson and a generalized Voce-Bergstrom relation adequately describe the tensile flow behavior of the present alloy in all conditions compared to the Hollomon relation. The variation in the Ludwigson fitting parameter could be correlated well with the microstructural features and anisotropic contribution of strengthening precipitates in the as-rolled and peak aged conditions, respectively. The hardening rate and the saturation stress of the first Voce-Bergstrom parameter, on the other hand, depend mainly on the crystallographic texture of the specimens. It is further shown that for the peak aged specimens the uniform elongation (epsilon(u)) derived from the Ludwigson relation matches well with the measured epsilon(u) irrespective of processing and loading directions. However, the Ludwigson fit overestimates the epsilon(u) in case of the as-rolled specimens. The Hollomon fit, on the other hand, predicts well the measured epsilon(u), of the as-rolled specimens but severely underestimates the epsilon(u), for the peak aged specimens. Contrarily, both the relations significantly overestimate the UTS of the as-rolled and the peak aged specimens. The Voce-Bergstrom parameters define the slope of e Theta-sigma plots in the stage-III regime when the specimens show a classical linear decrease in hardening rate in stage-III. Further analysis of work hardening behavior throws some light on the effect of texture on the dislocation storage and dynamic recovery.
Resumo:
Formation of a 2,3-dihydro-4H-pyran containing 14-membered macrocycle by sequential olefin cross metathesis and a highly regiospecific hetero Diels-Alder reaction was observed in the reaction of a hydroxydienone derived from tartaric acid with Grubbs' second generation catalyst. It was found that the free alcohol in the hydroxyenone led to the macrocycle formation, while protection of the hydroxy group formed the ring closing metathesis product. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
Effective air flow distribution through perforated tiles is required to efficiently cool servers in a raised floor data center. We present detailed computational fluid dynamics (CFD) modeling of air flow through a perforated tile and its entrance to the adjacent server rack. The realistic geometrical details of the perforated tile, as well as of the rack are included in the model. Generally, models for air flow through perforated tiles specify a step pressure loss across the tile surface, or porous jump model based on the tile porosity. An improvement to this includes a momentum source specification above the tile to simulate the acceleration of the air flow through the pores, or body force model. In both of these models, geometrical details of tile such as pore locations and shapes are not included. More details increase the grid size as well as the computational time. However, the grid refinement can be controlled to achieve balance between the accuracy and computational time. We compared the results from CFD using geometrical resolution with the porous jump and body force model solution as well as with the measured flow field using particle image velocimetry (PIV) experiments. We observe that including tile geometrical details gives better results as compared to elimination of tile geometrical details and specifying physical models across and above the tile surface. A modification to the body force model is also suggested and improved results were achieved.
Resumo:
This paper deals with an experimental study of pressure-swirl hydraulic injector nozzles using non-intrusive optical techniques. Experiments were conducted to study atomization characteristics using two nozzles with different orifice diameters, 0.3 mm and 0.5 mm, and injection pressures, 0.3-3.5 Mpa, which correspond to Reynolds number (Re-p) = 7,000-45,000, depending on nozzle utilized. Three laser diagnostic techniques were utilized: Shadowgraph, PIV (Particle Image Velocimetry), and PDPA (Phase Doppler Particle Anemometry). Measurements made in the spray in both axial and radial directions indicate that velocity, average droplet diameter profiles, and spray dynamics are highly dependent on the nozzle characteristics and injection pressure. Limitations of these techniques in the different flow regimes, related to the primary and secondary breakups as well as coalescence, are provided. Results indicate that all three techniques provide similar results throughout the different regimes. Shadowgraph and PDPA were possible in the secondary atomization and coalescence regimes while PIV measurements could be made only at the end of secondary atomization and coalescence.
Resumo:
The regioselective formation of highly branched dienes is a challenging task. Design and exploration of alternative working models to achieve such a regioselectivity to accomplish highly branched dienes is considered to be a historical advancement of Heck reaction to construct branched dienes. On the basis of the utility of carbene transfer reactions, in the reaction of hydrazones with Pd(II) under oxidative conditions, we envisioned obtaining a Pd-bis-carbene complex with alpha-hydrogens, which can lead to branched dienes. Herein, we report a novel Pd-catalyzed selective coupling reaction of hydrazones in the presence of t-BuOLi and benzoquinone to form the corresponding branched dienes. The utility of the Pd catalyst for the cross-coupling reactions for synthesizing branched conjugated dienes is rare. The reaction is very versatile and compatible with a variety of functional groups and is useful in synthesizing heterocyclic molecules. We anticipate that this Pd-catalyzed cross-coupling reaction will open new avenues for synthesizing useful compounds.
Resumo:
Phosphorylation of amines, alcohols, and sulfoximines are accomplished using molecular iodine as a catalyst and H2O2 as the sole oxidant under mild reaction conditions. This method provides an easy route for synthesizing a variety of phosphoramidates, phosphorus triesters and sulfoximine-derived phosphoramidates which are of biological importance.
Resumo:
In this paper, we study the free vibration of axially functionally graded (AFG) Timoshenko beams, with uniform cross-section and having fixed-fixed boundary condition. For certain polynomial variations of the material mass density, elastic modulus and shear modulus, along the length of the beam, there exists a fundamental closed form solution to the coupled second order governing differential equations with variable coefficients. It is found that there are an infinite number of non-homogeneous Timoshenko beams, with various material mass density, elastic modulus and shear modulus distributions having simple polynomial variations, which share the same fundamental frequency. The derived results can be used as benchmark solutions for testing approximate or numerical methods used for the vibration analysis of non-homogeneous Timoshenko beams. They can also be useful for designing fixed-fixed non-homogeneous Timoshenko beams which may be required to vibrate with a particular frequency. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
In order to suppress chronic inflammation while supporting cell proliferation, there has been a continuous surge toward development of polymers with the intention of delivering anti-inflammatory molecules in a sustained manner. In the above backdrop, we report the synthesis of a novel, stable, cross-linked polyester with salicylic acid (SA) incorporated in the polymeric backbone and propose a simple synthesis route by melt condensation. The as-synthesized polymer was hydrophobic with a glass transition temperature of 1 degrees C, which increases to 17 degrees C upon curing. The combination of NMR and FT-IR spectral techniques established the ester linkages in the as-synthesized SA-based polyester. The pH-dependent degradation rate and the rate of release of salicylic acid from the as-synthesized SA-based polymer were studied at physiological conditions in vitro. The polyester underwent surface erosion and exhibited linear degradation kinetics in which a change in degradation rate is observed after 4-10 days and 24% mass loss was recorded after 4 months at 37 degrees C and pH 7.4. The delivery of salicylic acid also showed a similar change in slopes, with a sustained release rate of 3.5% in 4 months. The cytocompatibility studies of these polyesters were carried out with C2C12 murine myoblast cells using techniques like MTT assay and flow cytometry. Our results strongly suggest that SA-based polyester supports cell proliferation for 3 days in culture and do not cause cell death (<7%), as quantified by propidium iodide (PI) stained cells. Hence, these polyesters can be used as implant materials for localized, sustained delivery of salicylic acid and have applications in adjuvant cancer therapy, chronic wound healing, and as an alternative to commercially available polymers like poly(lactic acid) and poly(glycolic acid) or their copolymers.
Resumo:
In this paper, a numerical investigation is performed to study the mixed convective flow and heat transfer characteristics past a square cylinder in cross flow at incidence. Utilizing air (Pr = 0.71) as an operating fluid, computations are carried out at a representative Reynolds number (Re) of 100. Angles of incidences are varied as, 0 degrees <= alpha <= 45 degrees. Effect of superimposed positive and negative cross-flow buoyancy is brought about by varying the Richardson number (RI) in the range -1.0 <= Ri <= 1.0. The detail features of flow topology and heat transport are analyzed critically for different angles of incidences. The thermo fluidic forces acting on the cylinder during mixed convection are captured in terms of the drag (C-D), lift (C-L), and moment (C-M) coefficients. The results show that the lateral width of the cylinder wake reduces with increasing alpha and the isotherms spread out far wide. In the range 0 degrees < alpha < 45 degrees, C-D reduces with increasing Ri. The functional dependence of C-M with Ri reveals a linear relationship. Thermal boundary layer thickness reduces with increasing angle of incidences. The global rate of heat transfer from the cylinder increases with increasing alpha. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Bio-nanocomposites have been developed using cross-linked chitosan and cross-linked thermoplastic starch along with acid functionalized multiwalled carbon nanotubes (f-MWCNT). The nanocomposites developed were characterized for mechanical, wear, and thermal properties. The results revealed that the nanocomposites exhibited enhanced mechanical properties. The composites containing 3% f-MWCNT showed maximum compression strength. Tribological studies revealed that, with the addition of small amount of f-MWCNTs the slide wear loss reduced up to 25%. SEM analysis of the nanocomposites showed predominantly brittle fractured surface. Thermal analysis showed that the incorporation of f-MWCNTs has improved the thermal stability for the nanocomposites.
Resumo:
Injection of liquid fuel in cross flowing air has been a strategy for future aircraft engines in order to control the emissions. In this context, breakup of a pressure swirl spray in gaseous cross-flow is investigated experimentally. The atomizer discharges a conical swirling sheet of liquid that interacts with cross-flowing air. This complex interaction and the resulting spray structures at various flow conditions are studied through flow visualization using still as well as high speed photography. Experiments are performed over a wide range of aerodynamic Weber number (2-300) and liquid-to-air momentum flux ratio (5-150). Various breakup regimes exhibiting different breakup processes are mapped on a parameter space based on flow conditions. This map shows significant variations from breakup regime map for a plain liquid jet in cross-flow. It is observed that the breakup of leeward side of the sheet is dominated by bag breakup and the windward side of the sheet undergoes breakup through surface waves. Similarities and differences between bag breakup present in plain liquid jet in cross-flow and swirl spray in cross-flow are explained. Multimodal drop size distribution from bag breakup, frequency of bag breakup, wavelength of surface waves and trajectory of spray in cross-flow are measured by analyzing the spray images and parametric study of their variations is also presented. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
In composite solid propellants, the fuel and oxidizer are held together by a polymer binder. Among the different types of polymeric binders used in solid propellants, hydroxyl terminated polybutadiene (HTPB) is considered as the most versatile. HTPB is conventionally cured using isocyanates to form polyurethanes. However, the incompatibility of isocyanates with energetic oxidizers such as ammonium dinitramide and hydrazinium nitroformate, the short pot life of the propellant slurry, and undesirable side reactions with moisture are limiting factors which adversely affect the mechanical properties of HTPB based propellant. With an aim of resolving these problems, HTPB was chemically transformed to azidoethoxy carbonyl amine terminated polybutadiene and propargyloxy carbonyl amine terminated polybutadiene by adopting appropriate synthesis strategies and characterizing them by spectroscopic and chromatographic techniques. This is the first report on 1,3-dipolar addition reaction involving azide and alkyne end groups for cross-linking HTPB. The blend of these two polymers underwent curing under mild temperature (60 degrees C) conditions through 1,3-dipolar cycloaddition reaction resulting in triazoletriazoline networks. The curing parameters were studied using differential scanning calorimetry. The kinetic parameter, viz., activation energy, was computed to be 107.6 kJ/mol, the preexponential factor was 2.79 x 10(12) s-(1), and the rate constant at 60 degrees C was computed to be 3.64 x 10-(5) s-(1). The cure profile at a given temperature was predicted using the kinetic parameters. Rheological studies revealed that the gel time for curing through the 1,3-dipolar addition is 280 min compared to 120 min for curing through the urethane route. The mechanical properties of the resultant cured polybutadiene network were superior to those of polyurethanes. The cured triazolinetriazole polymer network exhibited biphasic morphology with two glass transitions (T-g) at -56 and 42 degrees C in contrast to the polyurethane which exhibited a single transition at -60 degrees C. This was corroborated by associated morphological changes observed by scanning probe microscopy. The propellant processed using this binder has the advantages of improved pot life as indicated by the end of the mix viscosity which is 165 Pas as compared with 352 Pas for the polyurethane system along with a slow build- up rate. The mechanical properties of the propellant are superior to polyurethane with an improvement of 14% in tensile strength, 22% enhancement in elongation at break, and 12% in modulus.
Resumo:
Polycomb Repressive Complex 2 (PRC2) represses the transcriptional activity of target genes through trimethylation of lysine 27 of histone H3. The functions of plant PRC2 have been chiefly described in Arabidopsis, but specific functions in other plant species, especially cereals, are still largely unknown. Here we characterize mutants in the rice EMF2B gene, an ortholog of the Arabidopsis EMBRYONIC FLOWER2 (EMF2) gene. Loss of EMF2B in rice results in complete sterility, and mutant flowers have severe floral organ defects and indeterminacy that resemble loss-of-function mutants in E-function floral organ specification genes. Transcriptome analysis identified the E-function genes OsMADS1, OsMADS6 and OsMADS34 as differentially expressed in the emf2b mutant compared with wild type. OsMADS1 and OsMADS6, known to be required for meristem determinacy in rice, have reduced expression in the emf2b mutant, whereas OsMADS34 which interacts genetically with OsMADS1 was ectopically expressed. Chromatin immunoprecipitation for H3K27me3 followed by quantitative (q)RT-PCR showed that all three genes are presumptive targets of PRC2 in the meristem. Therefore, in rice, and possibly other cereals, PRC2 appears to play a major role in floral meristem determinacy through modulation of the expression of E-function genes.
Resumo:
An experimental investigation of sonic air, CO2 and Helium transverse jets in Mach 5 cross flow was carried out over a flat plate. The jet to freestream momentum flux ratio, J, was kept the same for all gases. The unsteady flow topology was examined using high speed schlieren visualisation and PIV. Schlieren visualisation provided information regarding oscillating jet shear layer structures and bow shock, Mach disc and barrel shocks. Two-component PIV measurements at the centreline, provided information regarding jet penetration trajectories. Barrel shocks and Mach disc forming the jet boundary were visualised/quantified also jet penetration boundaries were determined. Even though J is kept the same for all gases, the penetration patterns were found to be remarkably different both at the nearfield and the farfield. Air and CO2 jet resulted similar nearfield and farfield penetration pattern whereas Helium jet spread minimal in the nearfield.