937 resultados para dry gel


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study was undertaken to explore gel permeation chromatography (GPC) for estimating molecular weights of proanthocyanidin fractions isolated from sainfoin (Onobrychis viciifolia). The results were compared with data obtained by thiolytic degradation of the same fractions. Polystyrene, polyethylene glycol and polymethyl methacrylate standards were not suitable for estimating the molecular weights of underivatized proanthocyanidins. Therefore, a novel HPLC-GPC method was developed based on two serially connected PolarGel-L columns using DMF that contained 5% water, 1% acetic acid and 0.15 M LiBr at 0.7 ml/min and 50 degrees C. This yielded a single calibration curve for galloyl glucoses (trigalloyl glucose, pentagalloyl glucose), ellagitannins (pedunculagin, vescalagin, punicalagin, oenothein B, gemin A), proanthocyanidins (procyanidin B2, cinnamtannin B1), and several other polyphenols (catechin, epicatechin gallate, epicallocatechin gallate, amentoflavone). These GPC predicted molecular weights represented a considerable advance over previously reported HPLC-GPC methods for underivatized proanthocyanidins. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the increasing frequency and magnitude of warmer days during the summer in the UK, bedding plants which were a traditional part of the urban green landscape are perceived as unsustainable and water-demanding. During recent summers when bans on irrigation have been imposed, use and sales of bedding plants have dropped dramatically having a negative financial impact on the nursery industry. Retaining bedding species as a feature in public and even private spaces in future may be conditional on them being managed in a manner that minimises their water use. Using Petunia x hybrida ‘Hurrah White’ we aimed to discover which irrigation approach was the most efficient for maintaining plants’ ornamental quality (flower numbers, size and longevity), shoot and root growth under water deficit and periods of complete water withdrawal. Plants were grown from plugs for 51 days in wooden rhizotrons (0.35 m (h) x 0.1 m (w) x 0.065 m (d)); the rhizotrons’ front comprised clear Perspex which enabled us to monitor root growth closely. Irrigation treatments were: 1. watering with the amount which constitutes 50% of container capacity by conventional surface drip-irrigation (‘50% TOP’); 2. 50% as sub-irrigation at 10 cm depth (‘50% SUB’); 3. ‘split’ irrigation: 25% as surface drip- and 25% as sub-irrigation at 15 cm depth (‘25/25 SPLIT’); 4. 25% as conventional surface drip-irrigation (‘25% TOP’). Plants were irrigated daily at 18:00 apart from days 34-36 (inclusive) when water was withdrawn for all the treatments. Plants in ‘50% SUB’ had the most flowers and their size was comparable to that of ‘50% TOP’. Differences between treatments in other ‘quality’ parameters (height, shoot number) were biologically small. There was less root growth at deeper soil surface levels for ‘50% TOP’ which indicated that irrigation methods like ‘50% SUB’ and ‘25/25 SPLIT’ and stronger water deficits encouraged deeper root growth. It is suggested that sub-irrigation at 10 cm depth with water amounts of 50% container capacity would result in the most root growth with the maximum flowering for Petunia. Leaf stomatal conductance appeared to be most sensitive to the changes in substrate moisture content in the deepest part of the soil profile, where most roots were situated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sol-gel derived inorganic materials are of interest as hosts for non-linear optically active guest molecules and they offer particular advantages in the field of non-linear optics. Orientationally ordered glasses have been prepared using a sol-gel system based on tetramethoxysilane, methyltrimethoxysilane and a non-linear optical chromophore Disperse Red 1. The novel technique of photo-induced poling was used to generate enhanced levels of polar order. The level of enhancement is strongly dependent on the extent of gelation and an optimum preparation time of ∼100 h led to an enhancement factor of ∼5. Films prepared in this manner exhibited a high stability of the polar order.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Buffalo milk contains (40–60 %) more protein, fat and calcium than cows’ milk. These constituents were enhanced by ultrafiltration (UF) of cows’ milk to give a product with similar levels to those found in the buffalo milk. Mozzarella-type curd was made from buffalo, cows’ and UF cows’ milk to compare the overall curd yield and quality. The curd yield on both dry and wet weight basis, curd moisture content and overall curd fat retention were found to be higher in the UF cows’ milk than for either the buffalo or the cows’ milk preparations. The minimum whey fat losses occurred in the UF cows’ curd when compared to the cows’ and the buffalo curd. The whey protein losses were found to be higher in the UF cows’ curd than those for the buffalo and the cows’ curds. The total mineral content of the curd was also higher in the UF cows’ milk than that found in either the buffalo or the cows’ milk. SEM micrographs showed that casein micelles sizes were different in the two different types of milk. Casein micelles were also observed to be deformed in the UF cows’ milk samples. UF cows’ milk contained higher amounts of both the αs1- and αs2-casein moieties than either the buffalo or the cows’ milk. Buffalo milk was found to contain a higher concentration of β-casein than either the UF cows’ or untreated cows’ milk samples. Gel strength was found to be higher in the resultant buffalo curd than for curds made from either native cows’ milk or those made from UF cows’ milk. The mineral distribution was also different in the three different types of bovine milk, measured by energy-dispersive X-ray (EDX) analysis. Differences in the curd quality observed between the buffalo and the cows’ milk appear to result from the differences in casein composition and overall micelle structure, rather than casein concentration alone.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two genetic fingerprinting techniques, pulsed-field gel electrophoresis (PFGE) and ribotyping, were used to characterize 207 Escherichia coli O157 isolates from food animals, foods of animal origin, and cases of human disease (206 of the isolates were from the United Kingdom). In addition, 164 of these isolates were also phage typed. The isolates were divided into two general groups: (i) unrelated isolates not known to be epidemiologically linked (n = 154) and originating from food animals, foods and the environment, or humans and (ii) epidemiologically related isolates (n = 53) comprised of four related groups (RGs) originating either from one farm plus the abattoir where cattle from that farm were slaughtered or from one of three different English abattoirs. PFGE was conducted with the restriction endonuclease XbaI. while for ribotyping, two restriction endonucleases (PstI and SphI) were combined to digest genomic DNAs simultaneously. The 207 E. coli O157 isolates produced 97 PFGE profiles and 51 ribotypes. The two genetic fingerprinting methods had similar powers to discriminate the 154 epidemiologically unrelated E. coli O157 isolates in the study (Simpson's index of diversity [D] = 0.98 and 0.94 for PFGE typing and ribotyping, respectively). There was no correlation between the source of an isolate (healthy meat or milk animals, retail meats, or cases of human infection) and either particular PFGE or ribotype profiles or clusters. Combination of the results of both genetic fingerprinting methods produced 146 types, significantly more than when either of the two methods was used individually. Consequently, the superior discriminatory performance of the PFGE-ribotyping combination was proven in two ways: (i) by demonstrating that the majority of the E. coli O157 isolates with unrelated histories were indeed distinguishable types and (ii) by identifying some clonal groups among two of the four RGs of E. coli O157 isolates (comprising PFGE types different by just one or two bands), the relatedness of which would have remained unconfirmed otherwise.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The physiological performance of four cacao clones was examined under three artificial shade regimes over the course of a year in Ghana. Plants under light shade had significantly higher photosynthetic rates in the rainy seasons whereas in the dry season there was a trend of higher photosynthetic rates under heavy shade. The results imply that during the wet seasons light was the main limiting factor to photosynthesis whereas in the dry season vapour pressure deficit was the major factor limiting photosynthesis through stomatal regulation. Leaf area was generally lower under heavier shade but the difference between shade treatments varied between clones. Such differences in leaf area allocation appeared to underlie genotypic differences in final biomass production in response to shade. The results suggest that shade for young cacao should be provided based on the current ambient environment and genotype.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years, researchers and policy makers have recognized that nontimber forest products (NTFPs) extracted from forests by rural people can make a significant contribution to their well-being and to the local economy. This study presents and discusses data that describe the contribution of NTFPs to cash income in the dry deciduous forests of Orissa and Jharkhand, India. In its focus on cash income, this study sheds light on how the sale of NTFPs and products that use NTFPs as inputs contribute to the rural economy. From analysis of a unique data set that was collected over the course of a year, the study finds that the contribution of NTFPs to cash income varies across ecological settings, seasons, income level, and caste. Such variation should inform where and when to apply NTFP forest access and management policies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the exceptions of the bifidobacteria, propionibacteria and coriobacteria, the Actinobacteria associated with the human gastrointestinal tract have received little attention. This has been due to the seeming absence of these bacteria from most clone libraries. In addition, many of these bacteria have fastidious growth and atmospheric requirements. A recent cultivation-based study has shown that the Actinobacteria of the human gut may be more diverse than previously thought. The aim of this study was to develop a denaturing gradient gel electrophoresis (DGGE) approach for characterizing Actinobacteria present in faecal samples. Amount of DNA added to the Actinobacteria-specific PCR used to generate strong PCR products of equal intenstity from faecal samples of five infants, nine adults and eight elderly adults was anti-correlated with counts of bacteria obtained using fluorescence in situ hybridization probe HGC69A. A nested PCR using Actinobacteria-specific and universal PCR-DGGE primers was used to generate profiles for the Actinobacteria. Cloning of sequences from the DGGE bands confirmed the specificity of the Actinobacteria-specific primers. In addition to members of the genus Bifidobacterium, species belonging to the genera Propionibacterium, Microbacterium, Brevibacterium, Actinomyces and Corynebacterium were found to be part of the faecal microbiota of healthy humans.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We used fossil pollen to investigate the response of the eastern Chiquitano seasonally-dry tropical forest (SDTF), lowland Bolivia, to high-amplitude climate change associated with glacial–interglacial cycles. Changes in the structure, composition and diversity of the past vegetation are compared with palaeoclimate data previously reconstructed from the same record, and these results shed light on the biogeographic history of today’s highly disjunct blocks of SDTF across South America. We demonstrate that lower glacial temperatures limited tropical forest in the Chiquitanía region, and suggest that SDTF was absent or restricted at latitudes below 17°S, the proposed location of the majority of the hypothesized ‘Pleistocene dry forest arc’ (PDFA). At 19500 yrs b.p., warming supported the establishment of a floristically-distinct SDTF, which showed little change throughout the glacial–Holocene transition, despite a shift to significantly wetter conditions beginning ca. 12500–12200 yrs b.p. Anadenanthera colubrina, a key SDTF taxon, arrived at 10000 yrs b.p., which coincides with the onset of drought associated with an extended dry season. Lasting until 3000 yrs b.p., Holocene drought caused a floristic shift to more drought-tolerant taxa and a reduction in α-diversity (shown by declining palynological richness), but closed-canopy forest was maintained throughout. In contrast to the PDFA, the modern distribution of SDTF most likely represents the greatest spatial coverage of these forests in southern South America since glacial times. We find that temperature is a key climatic control upon the distribution of lowland South American SDTF over glacial-interglacial timescales, and seasonality of rainfall exerts a strong control on their floristic composition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Accurate differentiation between tropical forest and savannah ecosystems in the fossil pollen record is hampered by the combination of: i) poor taxonomic resolution in pollen identification, and ii) the high species diversity of many lowland tropical families, i.e. with many different growth forms living in numerous environmental settings. These barriers to interpreting the fossil record hinder our understanding of the past distributions of different Neotropical ecosystems and consequently cloud our knowledge of past climatic, biodiversity and carbon storage patterns. Modern pollen studies facilitate an improved understanding of how ecosystems are represented by the pollen their plants produce and therefore aid interpretation of fossil pollen records. To understand how to differentiate ecosystems palynologically, it is essential that a consistent sampling method is used across ecosystems. However, to date, modern pollen studies from tropical South America have employed a variety of methodologies (e.g. pollen traps, moss polsters, soil samples). In this paper, we present the first modern pollen study from the Neotropics to examine the modern pollen rain from moist evergreen tropical forest (METF), semi-deciduous dry tropical forest (SDTF) and wooded savannah (cerradão) using a consistent sampling methodology (pollen traps). Pollen rain was sampled annually in September for the years 1999–2001 from within permanent vegetation study plots in, or near, the Noel Kempff Mercado National Park (NKMNP), Bolivia. Comparison of the modern pollen rain within these plots with detailed floristic inventories allowed estimates of the relative pollen productivity and dispersal for individual taxa to be made (% pollen/% vegetation or ‘p/v’). The applicability of these data to interpreting fossil records from lake sediments was then explored by comparison with pollen assemblages obtained from five lake surface samples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sainfoin is a temperate legume that contains condensed tannins (CT), i.e. polyphenols that are able to bind proteins and thus reduce protein degradation in the rumen. A reduction in protein degradation in the rumen can lead to a subsequent increase in amino acid flow to the small intestine. The effects of CT in the rumen and the intestine differ according to the amount and structure of CT and the nature of the protein molecular structure. The objective of the present study was to investigate the degradability in the rumen of three CT-containing sainfoin varieties and CT-free lucerne in relation to CT content and structure (mean degree of polymerization, proportion of prodelphinidins and cis-flavanol units) and protein structure (amide I and II bands, ratio of amide I-to-amide II, α-helix, β-sheet, ratio of α-helix-to-β-sheet). Protein molecular structures were identified using Fourier transform/infrared-attenuated total reflectance (FT/IR-ATR) spectroscopy. The in situ degradability of three sainfoin varieties (Ambra, Esparcette and Villahoz) was studied in 2008, during the first growth cycle at two harvest dates (P1 and P2, i.e. 5 May and 2 June, respectively) and at one date (P3) during the second growth cycle (2 June) and these were compared with a tannin-free legume, lucerne (Aubigny). Loss of dry matter (DMDeg) and nitrogen (NDeg) in polyester bags suspended in the rumen was measured using rumen-fistulated cows. The NDeg of lucerne compared with sainfoin was 0·80 v. 0·77 at P1, 0·78 v. 0·65 at P2 and 0·79 v. 0·70 at P3, respectively. NDeg was related to the rapidly disappearing fraction (‘a’) fraction (r=0·76), the rate of degradation (‘c’) (r=0·92), to the content (r=−0·81) and structure of CT. However, the relationship between NDeg and the slowly disappearing fraction (‘b’) was weak. There was a significant effect of date and species×date, for NDeg and ‘a’ fraction. The secondary protein structure varied with harvest date (species×date) and was correlated with the fraction ‘b’. Both tannin and protein structures influenced the NDeg degradation. CT content and structure were correlated to the ‘a’ fraction and to the ‘c’. Features of the protein molecular secondary structure were correlated to the ‘b’ fraction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Global warming is expected to enhance fluxes of fresh water between the surface and atmosphere, causing wet regions to become wetter and dry regions drier, with serious implications for water resource management. Defining the wet and dry regions as the upper 30% and lower 70% of the precipitation totals across the tropics (30° S–30° N) each month we combine observations and climate model simulations to understand changes in the wet and dry regions over the period 1850–2100. Observed decreases in precipitation over dry tropical land (1950–2010) are also simulated by coupled atmosphere–ocean climate models (−0.3%/decade) with trends projected to continue into the 21st century. Discrepancies between observations and simulations over wet land regions since 1950 exist, relating to decadal fluctuations in El Niño southern oscillation, the timing of which is not represented by the coupled simulations. When atmosphere-only simulations are instead driven by observed sea surface temperature they are able to adequately represent this variability over land. Global distributions of precipitation trends are dominated by spatial changes in atmospheric circulation. However, the tendency for already wet regions to become wetter (precipitation increases with warming by 3% K−1 over wet tropical oceans) and the driest regions drier (precipitation decreases of −2% K−1 over dry tropical land regions) emerges over the 21st century in response to the substantial surface warming.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

While changes in land precipitation during the last 50 years have been attributed in part to human influences, results vary by season, are affected by data uncertainty and do not account for changes over ocean. One of the more physically robust responses of the water cycle to warming is the expected amplification of existing patterns of precipitation minus evaporation. Here, precipitation changes in wet and dry regions are analyzed from satellite data for 1988–2010, covering land and ocean. We derive fingerprints for the expected change from climate model simulations that separately track changes in wet and dry regions. The simulations used are driven with anthropogenic and natural forcings combined, and greenhouse gas forcing or natural forcing only. Results of detection and attribution analysis show that the fingerprint of combined external forcing is detectable in observations and that this intensification of the water cycle is partly attributable to greenhouse gas forcing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The European summer of 2013 was marked by hot and dry conditions in Western Europe associated with a northward shifted Atlantic storm track and a positive phase of the SNAO. Model results suggest that, relative to a 1964–93 reference period, changes in SST/SIE explain 63% (±26%) of the area-averaged warming signal over Western Europe, with the remaining 37% (±29%) explained by the direct impact of changes in anthropogenic radiative forcings from GHG and aerosols. The results further suggest that the anomalous atmospheric circulation, and associated low rainfall, were also influenced both by changes in SST/SIE and by the direct impact of changes in radiative forcings; however, the magnitude of the forced signals in these variables is much less, relative to internal variability, than for surface air temperature. Further evidence suggests that changes in North Atlantic SST were likely an important factor in explaining the striking contrast between the European summers of 2013 and that of 2012. A major area for further work is to understand more completely the mechanisms that explain these influences.