925 resultados para dose calculation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The blocking probability of a network is a common measure of its performance. There exist means of quickly calculating the blocking probabilities of Banyan networks; however, because Banyan networks have no redundant paths, they are not inherently fault-tolerant, and so their use in large-scale multiprocessors is problematic. Unfortunately, the addition of multiple paths between message sources and sinks in a network complicates the calculation of blocking probabilities. A methodology for exact calculation of blocking probabilities for small networks with redundant paths is presented here, with some discussion of its potential use in approximating blocking probabilities for large networks with redundant paths.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An empirical equation is proposed to accurately correlate isothermal data over a wide range of temperature With the equation ln k = A* + B*/T-lambda the retention times of different solutes tested on OV-101, SE-54 and PEG 20M capillary columns have been achieved even when lambda is assigned a constant value of 1.7 Comparison with ln k = A + B/T and in k = c + d/T+ h/T-2, shows that the proposed equation is of higher accuracy and is applicable to extrapolation calculation, especially from data at high temperature to those at low temperature. Parameters A* and B* as well as A and B are also discussed. The linear correlation of A* and B* is weaker than that of A and B.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The equivalence of two ways for the calculation of overlap integrals, i.e. the Sharp Rosenstock generating function method and the Doktorov coherent state method, has been proved. On the basis of the generating function of the overlap integrals, a new closed form expression for the Franck - Condon integrals for overlap multidimensional harmonic oscillators has been exactly derived. In addition, some useful analytical expressions for the calculations of the multimode Franck - Condon factors have been given.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lloyd, Noel G., and Pearson, Jane M., 'Space saving calculation of symbolic resultants', Mathematics in Computer Science, 1 (2007), 267-290.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: The eliciting dose (ED) for a peanut allergic reaction in 5% of the peanut allergic population, the ED05, is 1.5 mg of peanut protein. This ED05 was derived from oral food challenges (OFC) that use graded, incremental doses administered at fixed time intervals. Individual patients’ threshold doses were used to generate population dose-distribution curves using probability distributions from which the ED05 was then determined. It is important to clinically validate that this dose is predictive of the allergenic response in a further unselected group of peanut-allergic individuals. Methods/Aims: This is a multi-centre study involving three national level referral and teaching centres. (Cork University Hospital, Ireland, Royal Children’s Hospital Melbourne, Australia and Massachusetts General Hospital, Boston, U.S.A.) The study is now in process and will continue to run until all centres have recruited 125 participates in each respective centre. A total of 375 participants, aged 1–18 years will be recruited during routine Allergy appointments in the centres. The aim is to assess the precision of the predicted ED05 using a single dose (6 mg peanut = 1.5 mg of peanut protein) in the form of a cookie. Validated Food Allergy related Quality of Life Questionnaires-(FAQLQ) will be self-administered prior to OFC and 1 month after challenge to assess the impact of a single dose OFC on FAQL. Serological and cell based in vitro studies will be performed. Conclusion: The validation of the ED05 threshold for allergic reactions in peanut allergic subjects has potential value for public health measures. The single dose OFC, based upon the statistical dose-distribution analysis of past challenge trials, promises an efficient approach to identify the most highly sensitive patients within any given food-allergic population.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Interleukin-10 (IL-10) is currently being extensively studied in clinical trials for the treatment of Crohn's disease (CD). Only marginal effects have, however, been reported, and the dose-response curve was bell-shaped contrasting with the reported data from in vitro experiments. AIM: To use another in vitro model to analyze the effect of rhIL-10 and rhIL-4 on the spontaneous mucosal TNF-alpha secretion in patients with CD, and to characterize the phenotype of the cells targeted by rhIL-10. METHODS: Non-inflamed colon biopsies from CD patients were cultured for 16 hours in presence of different concentrations of rhIL-10 or rhIL-4. The numbers of TNF-alpha-secreting cells among isolated lamina propria mononuclear cells (LPMNC) were estimated by Elispot. RESULTS: Both rhIL-10 and rhIL-4 down-regulate TNF-alpha secretion by LPMNC from CD patients, with a more pronounced effect with rhIL-10. These effects were closely linked to the cytokine concentrations used, with a bell-shaped dose-response curve. Residual TNF-alpha secretion, in the presence of optimal rhIL-10 concentration was mainly attributable to CD3+ T cells. In contrast, at higher rhIL-10 concentrations, CD3- cells contributed significantly to the TNF-alpha secretion. CONCLUSIONS: The in vitro model we used, demonstrates that IL-4, but mostly IL-10, efficiently suppresses TNF-alpha secretion in LPMNC from CD patients, with a dose-response curve similar to results obtained in vivo. Resistance at high rhIL-10 concentrations was associated with a change in the phenotype of TNF-alpha-secreting cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Optimising chemotherapy dose density and dose intensity are strategies aimed at improving outcomes in adjuvant therapy for patients with breast cancer. There are, in theory, at least five models allowing the delivery of a higher overall drug dose intensity. These are reviewed in this article and vary according to three main variables: the dose per course, the interval between doses and the total cumulative dose. Cyclophosphamide, anthracyclines and taxanes are among the most active agents for the treatment of breast cancer and, as such, they have been or are currently the focus of prospective, randomised clinical trials testing some of these dose-intensity models in the adjuvant setting. The results of recent trials suggest that anthracyclines, but not cyclophosphamide, are associated with better outcomes if used at higher doses per course and at higher cumulative doses. However, care has to be taken with premenopausal women where an increased dose of anthracycline per course but a reduced cumulative dose appears to produce a worse outcome. Moreover, decreasing the interval between doses, for anthracyclines and cyclophosphamide, does not seem to provide, so far, additional benefits for women with locally advanced breast cancer. This approach is not feasible with docetaxel, since an increase in dose density induces unwanted side-effects. These results represent our current state of knowledge, but clinical trials are being performed to evaluate further the effect of dose intensity, dose density and cumulative dose of key therapeutic agents on patient outcomes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The increasing need for cross sections far from the valley of stability, especially for applications such as nuclear astrophysics, poses a challenge for nuclear reaction models. So far, predictions of cross sections have relied on more or less phenomenological approaches, depending on parameters adjusted to available experimental data or deduced from systematic relations. While such predictions are expected to be reliable for nuclei not too far from the experimentally known regions, it is clearly preferable to use more fundamental approaches, based on sound physical bases, when dealing with very exotic nuclei. Thanks to the high computer power available today, all major ingredients required to model a nuclear reaction can now be (and have been) microscopically (or semi-microscopically) determined starting from the information provided by an effective nucleon-nucleon interaction. All these microscopic ingredients have been included in the latest version of the TALYS nuclear reaction code (http://www.talys.eu/).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fixed dose combination abacavir/lamivudine/zidovudine (ABC/3TC/ZDV) among HIV-1 and tuberculosis (TB)-coinfected patients was evaluated and outcomes between early vs. delayed initiation were compared. In a randomized, pilot study conducted in the Kilimanjaro Region of Tanzania, HIV-infected inpatients with smear-positive TB and total lymphocyte count <1200/mm(3) were randomized to initiate ABC/3TC/ZDV either 2 (early) or 8 (delayed) weeks after commencing antituberculosis therapy and were followed for 104 weeks. Of 94 patients screened, 70 enrolled (41% female, median CD4 count 103 cells/mm(3)), and 33 in each group completed 104 weeks. Two deaths and 12 serious adverse events (SAEs) were observed in the early arm vs. one death, one clinical failure, and seven SAEs in the delayed arm (p = 0.6012 for time to first grade 3/4 event, SAE, or death). CD4 cell increases were +331 and +328 cells/mm(3), respectively. TB-immune reconstitution inflammatory syndromes (TB-IRIS) were not observed in any subject. Using intent-to-treat (ITT), missing = failure analyses, 74% (26/35) vs. 89% (31/35) randomized to early vs. delayed therapy had HIV RNA levels <400 copies/ml at 104 weeks (p = 0.2182) and 66% (23/35) vs. 74% (26/35), respectively, had HIV RNA levels <50 copies/ml (p = 0.6026). In an analysis in which switches from ABC/3TC/ZDV = failure, those receiving early therapy were less likely to be suppressed to <400 copies/ml [60% (21/35) vs. 86% (30/35), p = 0.030]. TB-IRIS was not observed among the 70 coinfected subjects beginning antiretroviral treatment. ABC/3TC/ZDV was well tolerated and resulted in steady immunologic improvement. Rates of virologic suppression were similar between early and delayed treatment strategies with triple nucleoside regimens when substitutions were allowed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Adenosine-induced transient flow arrest has been used to facilitate clip ligation of intracranial aneurysms. However, the starting dose that is most likely to produce an adequate duration of profound hypotension remains unclear. We reviewed our experience to determine the dose-response relationship and apparent perioperative safety profile of adenosine in intracranial aneurysm patients. METHODS: This case series describes 24 aneurysm clip ligation procedures performed under an anesthetic consisting of remifentanil, low-dose volatile anesthetic, and propofol in which adenosine was used. The report focuses on the doses administered; duration of systolic blood pressure <60 mm Hg (SBP(<60 mm Hg)); and any cardiovascular, neurologic, or pulmonary complications observed in the perioperative period. RESULTS: A median dose of 0.34 mg/kg ideal body weight (range: 0.29-0.44 mg/kg) resulted in a SBP(<60 mm Hg) for a median of 57 seconds (range: 26-105 seconds). There was a linear relationship between the log-transformed dose of adenosine and the duration of a SBP(<60 mm Hg) (R(2) = 0.38). Two patients developed transient, hemodynamically stable atrial fibrillation, 2 had postoperative troponin levels >0.03 ng/mL without any evidence of cardiac dysfunction, and 3 had postoperative neurologic changes. CONCLUSIONS: For intracranial aneurysms in which temporary occlusion is impractical or difficult, adenosine is capable of providing brief periods of profound systemic hypotension with low perioperative morbidity. On the basis of these data, a dose of 0.3 to 0.4 mg/kg ideal body weight may be the recommended starting dose to achieve approximately 45 seconds of profound systemic hypotension during a remifentanil/low-dose volatile anesthetic with propofol induced burst suppression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: X-ray computed tomography (CT) is widely used, both clinically and preclinically, for fast, high-resolution anatomic imaging; however, compelling opportunities exist to expand its use in functional imaging applications. For instance, spectral information combined with nanoparticle contrast agents enables quantification of tissue perfusion levels, while temporal information details cardiac and respiratory dynamics. The authors propose and demonstrate a projection acquisition and reconstruction strategy for 5D CT (3D+dual energy+time) which recovers spectral and temporal information without substantially increasing radiation dose or sampling time relative to anatomic imaging protocols. METHODS: The authors approach the 5D reconstruction problem within the framework of low-rank and sparse matrix decomposition. Unlike previous work on rank-sparsity constrained CT reconstruction, the authors establish an explicit rank-sparse signal model to describe the spectral and temporal dimensions. The spectral dimension is represented as a well-sampled time and energy averaged image plus regularly undersampled principal components describing the spectral contrast. The temporal dimension is represented as the same time and energy averaged reconstruction plus contiguous, spatially sparse, and irregularly sampled temporal contrast images. Using a nonlinear, image domain filtration approach, the authors refer to as rank-sparse kernel regression, the authors transfer image structure from the well-sampled time and energy averaged reconstruction to the spectral and temporal contrast images. This regularization strategy strictly constrains the reconstruction problem while approximately separating the temporal and spectral dimensions. Separability results in a highly compressed representation for the 5D data in which projections are shared between the temporal and spectral reconstruction subproblems, enabling substantial undersampling. The authors solved the 5D reconstruction problem using the split Bregman method and GPU-based implementations of backprojection, reprojection, and kernel regression. Using a preclinical mouse model, the authors apply the proposed algorithm to study myocardial injury following radiation treatment of breast cancer. RESULTS: Quantitative 5D simulations are performed using the MOBY mouse phantom. Twenty data sets (ten cardiac phases, two energies) are reconstructed with 88 μm, isotropic voxels from 450 total projections acquired over a single 360° rotation. In vivo 5D myocardial injury data sets acquired in two mice injected with gold and iodine nanoparticles are also reconstructed with 20 data sets per mouse using the same acquisition parameters (dose: ∼60 mGy). For both the simulations and the in vivo data, the reconstruction quality is sufficient to perform material decomposition into gold and iodine maps to localize the extent of myocardial injury (gold accumulation) and to measure cardiac functional metrics (vascular iodine). Their 5D CT imaging protocol represents a 95% reduction in radiation dose per cardiac phase and energy and a 40-fold decrease in projection sampling time relative to their standard imaging protocol. CONCLUSIONS: Their 5D CT data acquisition and reconstruction protocol efficiently exploits the rank-sparse nature of spectral and temporal CT data to provide high-fidelity reconstruction results without increased radiation dose or sampling time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

CONCLUSION Radiation dose reduction, while saving image quality could be easily implemented with this approach. Furthermore, the availability of a dosimetric data archive provides immediate feedbacks, related to the implemented optimization strategies. Background JCI Standards and European Legislation (EURATOM 59/2013) require the implementation of patient radiation protection programs in diagnostic radiology. Aim of this study is to demonstrate the possibility to reduce patients radiation exposure without decreasing image quality, through a multidisciplinary team (MT), which analyzes dosimetric data of diagnostic examinations. Evaluation Data from CT examinations performed with two different scanners (Siemens DefinitionTM and GE LightSpeed UltraTM) between November and December 2013 are considered. CT scanners are configured to automatically send images to DoseWatch© software, which is able to store output parameters (e.g. kVp, mAs, pitch ) and exposure data (e.g. CTDIvol, DLP, SSDE). Data are analyzed and discussed by a MT composed by Medical Physicists and Radiologists, to identify protocols which show critical dosimetric values, then suggest possible improvement actions to be implemented. Furthermore, the large amount of data available allows to monitor diagnostic protocols currently in use and to identify different statistic populations for each of them. Discussion We identified critical values of average CTDIvol for head and facial bones examinations (respectively 61.8 mGy, 151 scans; 61.6 mGy, 72 scans), performed with the GE LightSpeed CTTM. Statistic analysis allowed us to identify the presence of two different populations for head scan, one of which was only 10% of the total number of scans and corresponded to lower exposure values. The MT adopted this protocol as standard. Moreover, the constant output parameters monitoring allowed us to identify unusual values in facial bones exams, due to changes during maintenance service, which the team promptly suggested to correct. This resulted in a substantial dose saving in CTDIvol average values of approximately 15% and 50% for head and facial bones exams, respectively. Diagnostic image quality was deemed suitable for clinical use by radiologists.