988 resultados para distribuzioni temperate, trasformata di Fourier
Resumo:
Plussian blue(PB)/Pt modified electrode Tvas studied in the CdCl2 electrolyte solution by cyclic voltammetry and in situ FTIR spectroelectrochemistry. It was found that Cadmium ion was capable of substituting the high-spin iron of PB in an electrochemically induced substitution reaction and hexacyanoferrate cadmium (CdHCF) can be formed in the PB film. But PB and CdHCF in mixture film showed their own electrochemistry properties without serious effect on each other. The mechanism of substitution reaction has been given in detail.
Resumo:
Mixed Langmuir-Blodgett films of tri-(2,4-di-t-amylphenoxy)-(8-quinolinolyl) copper phthalocyanine and water-soluble fullerenols are prepared. Their behavior at the air-water interface and the monolayer morphology are studied. (C) 1998 Elsevier Science Limited. All rights reserved.
Resumo:
Extraction resins, of the type of;levextrel, (which is a collective term for styrene/divinylbenzene based copolymers of predominantly macroporous structure that contain a selective extractant) are important for the recovery and separation of metal ions, as they combine features of solvent extraction and ion exchange resins. This paper presents the results of the adsorption of heavy rare earth ions (Ho(III), Er(III), Tm(III), Yb(III), Lu(III) and Y(III)) from hydrochloric acid solutions at 0.2 mol/L ionic strength and 50 degrees C by the extraction resin containing di (2,4,4-trimethyl pentyl) phosphinic acid (Cyanex 272) and the chromatographic separation of (Er(III), Tm(III) and Yb(III)). Technological separation products, with purity and yield of Tm2O3 >99.97%, >80%, Er2O3 >99.9%, >94% and Yb2O3 >99.8%, >80% respectively, have been obtained from a feed having the composition Tm2O3 60%, Er2O3 10%, and Yb2O3 3%, the others 27%. The distribution coefficients, extraction equilibrium constants and separation factors have been determined as a function of acidity, loading of the resin and rare earths, flow rates and column ratios. The resolutions and efficiencies of separation of Er/Tm/Yb each other have been calculated. The stoichiometry of the extraction of rare earth ions has been suggested as well.
Resumo:
Dinuclear complexes [Mo-2(mu-pyS)(2)(CO)(4)(PPh(3))(2)] (1), [Mo-2(mu-pyS)(2)(CO)(5)(PPh(3))] (2) and a trace quality of trinuclear complex [Mo-3(mu-pyS)(2)(mu(3)-pyS)(2)(CO)(6)] (3) were obtained from the reaction of [Mo(CO)(3)(MeCN)(3)] with pyridine-2-thione (pySH) and PPh(3) in THF. The crystal structures of 1.2C(7)H(8) and 3.7 C7H8 have been determined by X-ray diffraction studies. Crystals of 1.2C(7)H(8) are monoclinic, space group C2/c and Z = 4, with a = 18.797(3), b = 11.143(4), c = 28.157(7) Angstrom, beta = 101.23(2)degrees. The structure was refined to R = 0.050 and Rw = 0.057 for 3146 observed reflections, Crystals of 3.7 C7H8 are monoclinic, space group P2(1)/a and Z = 4, with a = 13.912(2), b = 17.161(2), c = 15.577(3) Angstrom, beta = 101.17(1)degrees. The structure was refined to R = 0.046 and Rw = 0.051 for 4357 observed reflections. The molecule of 1 consists of two Mo(CO)(2)(PPh(3)) fragments linked by an Mo-Mo bond (2.974(2)Angstrom) and by two doubly-bridging pyS ligands. The compound 3 contains a bent open geometry of three molybdenum atoms (Mo(1)-Mo(2)-Mo(3) angle 122.99(3)degrees) linked by two Mo-Mo bonds (2.943(1) and 2.950(1) Angstrom) and by two doubly- and two triply-bridging pyS ligands.
Resumo:
The gold electrodes modified with 2-picolinic acid , nicotinic acid, iso-nicotinic or thiophene were prepared using membrane transfer method, The electrochemistry of di-mu-oxodimanganese 2,2'-bipyridine complex was studied in the acetic acid buffer solution at different modified gold electrodes, It was found that the modifiers which can promote the electrochemical reaction of the complex should be of at least two functional groups, One group can be bound to the electrode surface and the other can form electron transfer pathway between the modifier and the complex through sal; bridge or hydrogen bond, In addition, the mechanism of the electrochemical reaction was discussed.
Resumo:
A simple, convenient and versatile thin layer reflection Fourier transform IR microspectroelectrochemical (FTIRMSEC) cell has been described and characterized. Electrochemistry and in situ FTIR microspectroscopy were studied by using the hexacyanoferrate redox couple in aqueous sulphate solution, indicating that this type of cell is characteristic of both micro- or ultramicroelectrode and thin layer spectroelectrochemistry. Furthermore, the application of this FTIRMSEC cell to IR for characterization of the products of electrochemical reactions was carried out for the oxidation of (mesotetraphenylporphinato)manganese(III) perchlorate in dichloromethane + tetrabutylammonium perchlorate solution. Finally, the advantages and problems of this type of cell compared with a conventional optically transparent thin layer FTIR spectroelectrochemical cell were discussed.
Resumo:
The polymerization of acrylonitrile initiated by organolanthanide complexes alone is studied for the first time. The effect df polymerization conditions on catalytic activity of the title complex and molecular weight of the polymers produced have been studied.
Resumo:
The title complex, bis(2,6-di-tert-butyl-4-methyl-phenolato-O)tris(tetrahydrofuran-O)samarium tetrahydrofuran solvate, [Sm(C15H23O)2(C4H8O)3].C4H8O, has distorted trigonal bipyramidal geometry around the Sm(II) atom. The 0(2), 0(3) and 0(4) atoms of the
Resumo:
The title complex was synthesized and characterized by H-1, C-13, Sn-119 NMR and IR spectra. A single crystal X-ray diffraction study confirmed its molecular structure and revealed that 3,4,5-trimethoxy-benzoyl salicylahydrazone was a tridentate and approximately planar ligand. The complex crystallizes in the triclinic space group P1BAR with a = 9.208(3), b = 12.536(2), c = 12.187(4) angstrom, alpha = 113.12(2), beta = 90.58(2), gamma = 81.42(2), V = 1277.5(6) angstrom, Z = 2. The structure was refined to R = 0.033 and R(w) = 0.041 for 3944 observed independent reflections. The tin atom has a distorted trigonal bipyramidal coordination. The Sn-C bond lengths are 2.129(5) and 2.113(5) angstrom (av. 2.121(5) angstrom), the C-Sn-C angle is 123.3(2); the bond length between the tin atom and the chelating nitrogen is 2.173(3) angstrom. Two chain carbon atoms and the chelating nitrogen atom occupy the basal plane. The skeleton of two erect oxygen atoms and the tin atom is bent (O-Sn-O angle = 153.5(1)). In the complex, the ligand exists in the enol-form.
Resumo:
Bacterial surface colonization is a universal adaptation strategy in aquatic environments. However, neither the identities of early colonizers nor the temporal changes in surface assemblages are well understood. To determine the identities of the most common bacterial primary colonizers and to assess the succession process, if any, of the bacterial assemblages during early stages of surface colonization in coastal water of the West Pacific Ocean, nonnutritive inert materials (glass, Plexiglas, and polyvinyl chloride) were employed as test surfaces and incubated in seawater off the Qingdao coast in the spring of 2005 for 24 and 72 h. Phylogenetic analysis of the 16S rRNA gene sequences amplified from the recovered surface-colonizing microbiota indicated that diverse bacteria colonized the submerged surfaces. Multivariate statistical cluster analyses indicated that the succession of early surface-colonizing bacterial assemblages followed sequential steps on all types of test surfaces. The Rhodobacterales, especially the marine Roseobacter clade members, formed the most common and dominant primary surface-colonizing bacterial group. Our current data, along with previous studies of the Atlantic coast, indicate that the Rhodobacterales bacteria are the dominant and ubiquitous primary surface colonizers in temperate coastal waters of the world and that microbial surface colonization follows a succession sequence. A conceptual model is proposed based on these findings, which may have important implications for understanding the structure, dynamics, and function of marine biofilms and for developing strategies to harness or control surface-associated microbial communities.
Resumo:
Chitosan (CS) with two different molecular weights was modified by reacting with 4-hydroxyl-5-chloride-1,3-benzene-disulfo-chloride or 2-hydroxyl-5-chloride-1,3-benzene-disulfo-chloride to give new 2-(4(or 2)-hydroxyl-5-chloride-1,3-benzene-di-sulfanimide)-chitosan (2-HCBSAHCS, 2-HCBSALCS, 4-HCBSAHCS, 4-HCBSALCS). The structure of the derivatives was characterized by FT-IR and C-13 NMR spectroscopy. The antioxidant activities of the derivatives were investigated employing various established systems, such as hydroxyl radical ((OH)-O-center dot)/superoxide anion (O-2(radical anion)) scavenging/reducing power and chelating activity. All the derivatives showed stronger scavenging activity on hydroxyl radical than chitosan and ascorbic acid (Vc), and IC50 of 4-HCBSAHCS, 4-HCBSALCS, 2-HCBSAHCS and 2-HCBSALCS was 0.334, 0.302, 0.442, 0.346 mg/mL, respectively. The inhibitory activities of the derivatives toward superoxide radical by the PMS-NADH system were strong. The results showed that the superoxide radical scavenging effect of 2-(4(or 2)-hydroxyl-5-chloride-1,3-benzene-disulfanimide)-chitosan was higher than chitosan. The derivatives had obviously reducing power and slight chelating activity. The data obtained in in vitro models clearly establish the antioxidant potency of 2-(4(or 2)-hydroxyl-5-chloride-1,3-benzene-disulfanimide)-chitosan. (C) 2007 Elsevier Masson SAS. All rights reserved.
Resumo:
本文采用粉末X-射线衍射法,首次对不同产地的锁阳样品进行了分析,获得了锁阳的标准X衍射Fourier谱及特征标记峰,为锁阳药材的鉴定提供了新的谱学分析依据。
Resumo:
With the development of seismic exploration, the target becomes more and more complex, which leads to a higher demand for the accuracy and efficiency in 3D exploration. Fourier finite-difference (FFD) method is one of the most valuable methods in complex structure exploration, which keeps the ability of finite-differenc method in dealing with laterally varing media and inherits the predominance of the phase-screen method in stablility and efficiency. In this thesis, the accuracy of the FFD operator is highly improved by using simulated annealing algorithm. This method takes the extrapolation step and band width into account, which is more suitable to various band width and discrete scale than the commonely-used optimized method based on velocity contrast alone. In this thesis, the FFD method is extended to viscoacoustic modeling. Based on one-way wave equation, the presented method is implemented in frequency domain; thus, it is more efficient than two-way methods, and is more convenient than time domain methods in handling attenuation and dispersion effects. The proposed method can handle large velocity contrast and has a high efficiency, which is helpful to further research on earth absorption and seismic resolution. Starting from the frequency dispersion of the acoustic VTI wave equation, this thesis extends the FFD migration method to the acoustic VTI media. Compared with the convetional FFD method, the presented method has a similar computational efficiency, and keeps the abilities of dealing with large velocity contrasts and steep dips. The numerical experiments based on the SEG salt model show that the presented method is a practical migration method for complex acoustical VTI media, because it can handle both large velocity contrasts and large anisotropy variations, and its accuracy is relatively high even in strong anisotropic media. In 3D case, the two-way splitting technique of FFD operator causes artificial azimuthal anisotropy. These artifacts become apparent with increasing dip angles and velocity contrasts, which prevent the application of the FFD method in 3D complex media. The current methods proposed to reduce the azimuthal anisotropy significantly increase the computational cost. In this thesis, the alternating-direction-implicit plus interpolation scheme is incorporated into the 3D FFD method to reduce the azimuthal anisotropy. By subtly utilizing the Fourier based scheme of the FFD method, the improved fast algorithm takes approximately no extra computation time. The resulting operator keeps both the accuracy and the efficiency of the FFD method, which is helpful to the inhancements of both the accuracy and the efficiency for prestack depth migration. The general comparison is presented between the FFD operator and the generalized-screen operator, which is valuable to choose the suitable method in practice. The percentage relative error curves and migration impulse responses show that the generalized-screen operator is much sensiutive to the velocity contrasts than the FFD operator. The FFD operator can handle various velocity contrasts, while the generalized-screen operator can only handle some range of the velocity contrasts. Both in large and weak velocity contrasts, the higher order term of the generalized-screen operator has little effect on improving accuracy. The FFD operator is more suitable to large velocity contrasts, while the generalized-screen operator is more suitable to middle velocity contrasts. Both the one-way implicit finite-difference migration and the two-way explicit finite-differenc modeling have been implemented, and then they are compared with the corresponding FFD methods respectively. This work gives a reference to the choosen of proper method. The FFD migration is illustrated to be more attractive in accuracy, efficiency and frequency dispertion than the widely-used implicit finite-difference migration. The FFD modeling can handle relatively coarse grids than the commonly-used explicit finite-differenc modeling, thus it is much faster in 3D modeling, especially for large-scale complex media.