817 resultados para distributed teams
Resumo:
Unorganized traffic is a generalized form of travel wherein vehicles do not adhere to any predefined lanes and can travel in-between lanes. Such travel is visible in a number of countries e.g. India, wherein it enables a higher traffic bandwidth, more overtaking and more efficient travel. These advantages are visible when the vehicles vary considerably in size and speed, in the absence of which the predefined lanes are near-optimal. Motion planning for multiple autonomous vehicles in unorganized traffic deals with deciding on the manner in which every vehicle travels, ensuring no collision either with each other or with static obstacles. In this paper the notion of predefined lanes is generalized to model unorganized travel for the purpose of planning vehicles travel. A uniform cost search is used for finding the optimal motion strategy of a vehicle, amidst the known travel plans of the other vehicles. The aim is to maximize the separation between the vehicles and static obstacles. The search is responsible for defining an optimal lane distribution among vehicles in the planning scenario. Clothoid curves are used for maintaining a lane or changing lanes. Experiments are performed by simulation over a set of challenging scenarios with a complex grid of obstacles. Additionally behaviours of overtaking, waiting for a vehicle to cross and following another vehicle are exhibited.
Resumo:
Flash floods pose a significant danger for life and property. Unfortunately, in arid and semiarid environment the runoff generation shows a complex non-linear behavior with a strong spatial and temporal non-uniformity. As a result, the predictions made by physically-based simulations in semiarid areas are subject to great uncertainty, and a failure in the predictive behavior of existing models is common. Thus better descriptions of physical processes at the watershed scale need to be incorporated into the hydrological model structures. For example, terrain relief has been systematically considered static in flood modelling at the watershed scale. Here, we show that the integrated effect of small distributed relief variations originated through concurrent hydrological processes within a storm event was significant on the watershed scale hydrograph. We model these observations by introducing dynamic formulations of two relief-related parameters at diverse scales: maximum depression storage, and roughness coefficient in channels. In the final (a posteriori) model structure these parameters are allowed to be both time-constant or time-varying. The case under study is a convective storm in a semiarid Mediterranean watershed with ephemeral channels and high agricultural pressures (the Rambla del Albujón watershed; 556 km 2 ), which showed a complex multi-peak response. First, to obtain quasi-sensible simulations in the (a priori) model with time-constant relief-related parameters, a spatially distributed parameterization was strictly required. Second, a generalized likelihood uncertainty estimation (GLUE) inference applied to the improved model structure, and conditioned to observed nested hydrographs, showed that accounting for dynamic relief-related parameters led to improved simulations. The discussion is finally broadened by considering the use of the calibrated model both to analyze the sensitivity of the watershed to storm motion and to attempt the flood forecasting of a stratiform event with highly different behavior.
Resumo:
This article reviews the experiences of a practising business consultancy division. It discusses the reasons for the failure of the traditional, expert consultancy approach and states the requirements for a more suitable consultancy methodology. An approach called ‘Modelling as Learning’ is introduced, its three defining aspects being: client ownership of all analytical work performed, consultant acting as facilitator and sensitivity to soft issues within and surrounding a problem. The goal of such an approach is set as the acceleration of the client's learning about the business. The tools that are used within this methodological framework are discussed and some case studies of the methodology are presented. It is argued that a learning experience was necessary before arriving at the new methodology but that it is now a valuable and significant component of the division's work.
Resumo:
Purpose– The purpose of this paper is to shed new light on the link between diversity in project teams and team performance by examining the effects of players’ international career diversity on the performance of national football teams. Design/methodology/approach– The paper draws upon the literature on project organizations and experiential diversity in teams. Using data on players’ international career backgrounds and team performance from the FIFA World Cup 2006, the authors test two hypotheses linking experiential diversity in teams and a measure of relative team performance. The dataset includes detailed individual background profiles of the 736 participating players and performance data from the 64 games played at the tournament. Findings– The findings suggest that different types of experiential diversity have contrasting effects on team performance in a time‐limited project team setting. Research limitations/implications– These findings encourage team diversity researchers to further examine the impact of experiential diversity in teams on team process and performance outcomes in future research. Practical implications– The findings particularly highlight the need to carefully manage experiential diversity in project team settings in order to benefit from access to diverse tacit resources, while at the same time avoiding that the integrative capacities of teams becoming overstretched. Originality/value– The paper is a step towards a better understanding of how diversity of individual career backgrounds affects team performance outcomes in project teams.
Resumo:
This paper investigates how changes in firm degree of internationalization are associated with the configuration of top management teams (TMT) based on a dataset of 41 large European firms in the banking and insurance industry, including detailed career profiles of the 264 executives that were serving on the TMTs of these firms at year-end 2002. Our findings suggest firms tend to match top executive profiles to their strategies. Entry into new foreign markets and new cultural zones was found to be associated with higher levels of international capacity at TMT level, whereas changes in international posture per se are not related to TMT international capacity. We discuss the interplay between firm strategies and internal structures in the context of firm internationalization and suggest directions for future research on TMTs
Resumo:
Highly heterogeneous mountain snow distributions strongly affect soil moisture patterns; local ecology; and, ultimately, the timing, magnitude, and chemistry of stream runoff. Capturing these vital heterogeneities in a physically based distributed snow model requires appropriately scaled model structures. This work looks at how model scale—particularly the resolutions at which the forcing processes are represented—affects simulated snow distributions and melt. The research area is in the Reynolds Creek Experimental Watershed in southwestern Idaho. In this region, where there is a negative correlation between snow accumulation and melt rates, overall scale degradation pushed simulated melt to earlier in the season. The processes mainly responsible for snow distribution heterogeneity in this region—wind speed, wind-affected snow accumulations, thermal radiation, and solar radiation—were also independently rescaled to test process-specific spatiotemporal sensitivities. It was found that in order to accurately simulate snowmelt in this catchment, the snow cover needed to be resolved to 100 m. Wind and wind-affected precipitation—the primary influence on snow distribution—required similar resolution. Thermal radiation scaled with the vegetation structure (~100 m), while solar radiation was adequately modeled with 100–250-m resolution. Spatiotemporal sensitivities to model scale were found that allowed for further reductions in computational costs through the winter months with limited losses in accuracy. It was also shown that these modeling-based scale breaks could be associated with physiographic and vegetation structures to aid a priori modeling decisions.
Resumo:
In this paper, we develop an energy-efficient resource-allocation scheme with proportional fairness for downlink multiuser orthogonal frequency-division multiplexing (OFDM) systems with distributed antennas. Our aim is to maximize energy efficiency (EE) under the constraints of the overall transmit power of each remote access unit (RAU), proportional fairness data rates, and bit error rates (BERs). Because of the nonconvex nature of the optimization problem, obtaining the optimal solution is extremely computationally complex. Therefore, we develop a low-complexity suboptimal algorithm, which separates subcarrier allocation and power allocation. For the low-complexity algorithm, we first allocate subcarriers by assuming equal power distribution. Then, by exploiting the properties of fractional programming, we transform the nonconvex optimization problem in fractional form into an equivalent optimization problem in subtractive form, which includes a tractable solution. Next, an optimal energy-efficient power-allocation algorithm is developed to maximize EE while maintaining proportional fairness. Through computer simulation, we demonstrate the effectiveness of the proposed low-complexity algorithm and illustrate the fundamental trade off between energy and spectral-efficient transmission designs.
Resumo:
The Mobile Network Optimization (MNO) technologies have advanced at a tremendous pace in recent years. And the Dynamic Network Optimization (DNO) concept emerged years ago, aimed to continuously optimize the network in response to variations in network traffic and conditions. Yet, DNO development is still at its infancy, mainly hindered by a significant bottleneck of the lengthy optimization runtime. This paper identifies parallelism in greedy MNO algorithms and presents an advanced distributed parallel solution. The solution is designed, implemented and applied to real-life projects whose results yield a significant, highly scalable and nearly linear speedup up to 6.9 and 14.5 on distributed 8-core and 16-core systems respectively. Meanwhile, optimization outputs exhibit self-consistency and high precision compared to their sequential counterpart. This is a milestone in realizing the DNO. Further, the techniques may be applied to similar greedy optimization algorithm based applications.
Resumo:
It has been years since the introduction of the Dynamic Network Optimization (DNO) concept, yet the DNO development is still at its infant stage, largely due to a lack of breakthrough in minimizing the lengthy optimization runtime. Our previous work, a distributed parallel solution, has achieved a significant speed gain. To cater for the increased optimization complexity pressed by the uptake of smartphones and tablets, however, this paper examines the potential areas for further improvement and presents a novel asynchronous distributed parallel design that minimizes the inter-process communications. The new approach is implemented and applied to real-life projects whose results demonstrate an augmented acceleration of 7.5 times on a 16-core distributed system compared to 6.1 of our previous solution. Moreover, there is no degradation in the optimization outcome. This is a solid sprint towards the realization of DNO.
Resumo:
In this paper, a new paradigm is presented, to improve the performance of audio-based P300 Brain-computer interfaces (BCIs), by using spatially distributed natural sound stimuli. The new paradigm was compared to a conventional paradigm using spatially distributed sound to demonstrate the performance of this new paradigm. The results show that the new paradigm enlarged the N200 and P300 components, and yielded significantly better BCI performance than the conventional paradigm.
Resumo:
We present one of the first studies of the use of Distributed Temperature Sensing (DTS) along fibre-optic cables to purposely monitor spatial and temporal variations in ground surface temperature (GST) and soil temperature, and provide an estimate of the heat flux at the base of the canopy layer and in the soil. Our field site was at a groundwater-fed wet meadow in the Netherlands covered by a canopy layer (between 0-0.5 m thickness) consisting of grass and sedges. At this site, we ran a single cable across the surface in parallel 40 m sections spaced by 2 m, to create a 40×40 m monitoring field for GST. We also buried a short length (≈10 m) of cable to depth of 0.1±0.02 m to measure soil temperature. We monitored the temperature along the entire cable continuously over a two-day period and captured the diurnal course of GST, and how it was affected by rainfall and canopy structure. The diurnal GST range, as observed by the DTS system, varied between 20.94 and 35.08◦C; precipitation events acted to suppress the range of GST. The spatial distribution of GST correlated with canopy vegetation height during both day and night. Using estimates of thermal inertia, combined with a harmonic analysis of GST and soil temperature, substrate and soil-heat fluxes were determined. Our observations demonstrate how the use of DTS shows great promise in better characterising area-average substrate/soil heat flux, their spatiotemporal variability, and how this variability is affected by canopy structure. The DTS system is able to provide a much richer data set than could be obtained from point temperature sensors. Furthermore, substrate heat fluxes derived from GST measurements may be able to provide improved closure of the land surface energy balance in micrometeorological field studies. This will enhance our understanding of how hydrometeorological processes interact with near-surface heat fluxes.
Resumo:
School reform is a major concern in many countries that seek to improve their educational systems and enhance their performances. In consequence, many global schemes, theories, studies, attempts, and programmes have been introduced to promote education in recent years. Saudi Arabia is one of these countries that implemented educational change by introducing many initiatives. The Tatweer Programme is one of these initiatives and is considered as a major recent reform. The main purpose of this study is to investigate this reform in depth by examining the perceptions and experiences of the Tatweer leaders and teachers to find out which extent they have been enabled to be innovative, and to examine the types of leadership and decision-making that have been undertaken by such schools. This study adopted a qualitative case study that employed interviews, focus groups and documentary analysis. The design of the study has been divided into two phases; the first phase was the feasibility study and the second phase was the main study. The research sample of the feasibility study was head teachers, educational experts and Tatweer Unit’s members. The sample of the main study was three Tatweer schools, Tatweer Unit members and one official of Tatweer Project in Riyadh. The findings of this study identified the level of autonomy in managing the school; the Tatweer schools’ system is semi-autonomous when it comes to the internal management, but it lacks autonomy when it comes to staff appointment, student assessment, and curriculum development. In addition, the managerial work has been distributed through teams and members; the Excellence Team plays a critical role in school effectiveness leading an efficient change. Moreover, Professional Learning Communities have been used to enhance the work within Tatweer schools. Finally the findings show that there have been major shifts in the Tatweer schools’ system; the shifting from centralisation to semi-decentralisation; from the culture of the individual to the culture of community; from the traditional school to one focused on self-evaluation and planning; from management to leadership; and from an isolated school being open to society. These shifts have impacted positively on the attitudes of students, parents and staff.
Resumo:
This article presents an experimental scalable message driven IoT and its security architecture based on Decentralized Information Flow Control. The system uses a gateway that exports SoA (REST) interfaces to the internet simplifying external applications whereas uses DIFC and asynchronous messaging within the home environment.
Resumo:
Five new species of Paepalanthus section Diphyomene are described and illustrated: P. brevis, P. flexuosus, P. longiciliatus, P. macer, and P. stellatus. Paepalanthus brevis, similar to P. decussus, is easily distinguished by its short reproductive axis, and pilose and mucronate leaves. Paepalanthus flexuosus, morphologically related to P. urbanianus, possesses a distinctive short and tortuous reproductive axis. Paepalanthus longiciliatus, morphologically similar to P. weddellianus, possesses long trichomes on the margins of the reproductive axis bracts, considered a diagnostic feature. Paepalanthus macer shares similarities with P. amoenus, differing by its sulfurous capitula and adpressed reproductive axis bracts. Paepalanthus stellatus also has affinity with P. decussus, but possesses unique, membranaceous, reproductive-axis bracts and a punctual inner-capitulum arrangement of pistillate flowers. Four of the described species are narrowly distributed in the state of Goias, whereas P. brevis is endemic to Distrito Federal. All are considered critically endangered. Detailed comparisons of these species are presented in tables. Comments on phenology, distribution, habitat and etymology, along with an identification key, are provided.