1000 resultados para digitaalinen media
Resumo:
This paper explores the construction of female abject beings in Colombian contemporary media and culture comparing a character in the 2010 telenovela Chepe Fortuna named Venezuela, and the cultural representation of Piedad Córdoba. I argue that the construction of these two characters as abject beings is coherent with the dominant discourse of Alvaro Uribe's national project, which relied on a strong nationalist rhetoric based on binary oppositions of the type "we/other." In this context both Chepe Fortuna's Venezuela and Piedad Córdoba are constructed as "other." While Venezuela's abjection is partly effected on the basis of her being fat and black, Córdoba's is on the basis of her being a left-wing politician, and mediated through her being a black female. These two instances evidence an approach to femaleness that goes hand-in-hand with particular understandings of female subjectivity within current post-feminist paradigms.
Resumo:
The subject of the thesis was the digital audio broadcasting technology developed in the Eureka project 147. The research was based on the literature on the subject. At first, some reasons for the digitisation of broadcasting technology were given. Next, the channel multiplexing and channel coding methods employed by digital radio were discussed. The design of these methods is based on certain phenomena related to the propagation of radio-frequency signals, and these phenomena were also described. After that, audio and data transfer mechanisms as well as the structure of digital radio network were explained. Furthermore, digital audio and data services were considered. Finally, the digital radio was examined from marketing and administrative aspects. From a merely technical point of view, the digital radio technology offers several improvements in comparison with analogue technology. However, the digital radio has not become as widespread as it was perhaps originally expected during its development.
Resumo:
Boiling two-phase flow and the equations governing the motion of fluid in two-phase flows are discussed in this thesis. Disposition of the governing equations in three-dimensional complex geometries is considered from the perspective of the porous medium concept. The equations governing motion in two-phase flows were formulated, discretized and implemented in a subroutine for pressure-velocity solution utilizing the SIMPLE algorithm modified for two-phase flow. The subroutine was included in PORFLO, which is a three-dimensional 5-equation porous media model developed at VTT by Jaakko Miettinen. The development of two-phase flow and the resulting void fraction distribution was predicted in a geometry resembling a section of BWR fuel bundle in a couple of test cases using PORFLO.
Resumo:
Digitarina (DigiTales) on digitaalinen tarinankerrontaprojekti, jossa osallistujat työstävät media-alan ammattilaisen opastuksella digitaalisesti tuotetun ja levitettävän tarinan tai lyhytelokuvan tekijän itsensä kuvaamasta videomateriaalista, valokuvista, piirustustuksista sekä äänimateriaalista. Digitarina-työskentelyä on testattu eri maissa muun muassa peruskoulunopettajien ja teini-ikäisten mediakasvatustyökaluna ja sillä on pilottikokeilujen perusteella ollut positiivisia vaikutuksia oppilaiden motivointiin erityisesti ryhmissä, joissa motivoitumistaso koulunkäyntiin on ollut alhainen tai joissa oppilailla on vaikeuksia ilmaista itseään tai tuottaa sisältöä itse. Tämän tutkielman tavoite on pohtia digitarina-työskentelyä oppilaiden voimautumista edistävänä keinona Aurinkolahden peruskoulussa tehtyjen digitarina-työpajojen tuloksien perusteella sekä omien havaintojeni kautta koulun harjaantumisluokassa vetämäni työpajan kokemuksista. Digitarinan työstäminen ei itsessään tuota voimaantumista tai johda voimaantumiseen, mutta luova työskentely oppilaita itseään kiinnostavien aiheiden parissa sekä oppilaiden uudenlaisten kykyjen esiintuomisella oli vaikutusta positiiviseen lataukseen ja oppilaiden myönteiseen suhtautumiseen omiin taitoihinsa sekä itseilmaisuun. Lisäksi vuorovaikutus oppilaiden välillä heidän omien teostensa kautta toteutui onnistuneesti, sillä oppilaat oppivat toisistaan uusia asioita, olivat kiinnostuneita toistensa tarinoista ja antoivat toisilleen myönteistä palautetta. Tutkielman tulosten mukaan oppilaat kokivat digitarina-työskentelyn aikana voimautumista: mielihyvää, iloa ja ylpeyttä omasta osaamisestaan. Oppilaat saivat itseluottamusta ja uskoa kykyihinsä tuottaa omaa mediasisältöä. Käsittelen lyhyesti myös erilaisia näkökulmia mediakasvatuksesta ja lasten ja nuorten oman mediasisällön tuottamisesta kouluissa.
Resumo:
Assisted reproductive technologies (ART) induce vascular dysfunction in humans and mice. In mice, ART-induced vascular dysfunction is related to epigenetic alteration of the endothelial nitric oxide synthase (eNOS) gene, resulting in decreased vascular eNOS expression and nitrite/nitrate synthesis. Melatonin is involved in epigenetic regulation, and its administration to sterile women improves the success rate of ART. We hypothesized that addition of melatonin to culture media may prevent ART-induced epigenetic and cardiovascular alterations in mice. We, therefore, assessed mesenteric-artery responses to acetylcholine and arterial blood pressure, together with DNA methylation of the eNOS gene promoter in vascular tissue and nitric oxide plasma concentration in 12-wk-old ART mice generated with and without addition of melatonin to culture media and in control mice. As expected, acetylcholine-induced mesenteric-artery dilation was impaired (P = 0.008 vs. control) and mean arterial blood pressure increased (109.5 ± 3.8 vs. 104.0 ± 4.7 mmHg, P = 0.002, ART vs. control) in ART compared with control mice. These alterations were associated with altered DNA methylation of the eNOS gene promoter (P < 0.001 vs. control) and decreased plasma nitric oxide concentration (10.1 ± 11.1 vs. 29.5 ± 8.0 μM) (P < 0.001 ART vs. control). Addition of melatonin (10(-6) M) to culture media prevented eNOS dysmethylation (P = 0.005, vs. ART + vehicle), normalized nitric oxide plasma concentration (23.1 ± 14.6 μM, P = 0.002 vs. ART + vehicle) and mesentery-artery responsiveness to acetylcholine (P < 0.008 vs. ART + vehicle), and prevented arterial hypertension (104.6 ± 3.4 mmHg, P < 0.003 vs. ART + vehicle). These findings provide proof of principle that modification of culture media prevents ART-induced vascular dysfunction. We speculate that this approach will also allow preventing ART-induced premature atherosclerosis in humans.
Resumo:
Abstract: A bouble-faced medium? The challenges and opportunities of the Internet for social movements
Resumo:
Objective To compare automatic and manual measurements of intima-media complex (IMC) in common carotid, common femoral and right subclavian arteries of HIV-infected patients in relation to a control group, taking into consideration the classical risk factors for atherosclerosis. Materials and Methods The study sample comprised 70 HIV-infected patients and 70 non-HIV-infected controls paired according sex and age. Automatic (gold standard) and manual measurements of IMC were performed in the carotid arteries. Manual measurements were also performed in common femoral and right subclavian arteries. Bland-Altman graphs were utilized in the comparison and the adopted level significance was 5%. Results Intima-media complex alterations were not observed in any of the individuals as the mean automatic measurement in the right common carotid (RCC) artery was considered as the gold standard. As the gold standard was compared with the manual measurements (mean, maximum and minimum), no clinically significant alteration was observed. As the gold standard was compared with other sites, the difference was statistically and clinically significant at the origin of right subclavian artery (RCC: 0.51 mm vs. 0.91 mm) (p < 0.001). Conclusion HIV-infected individuals are not at higher risk for atherosclerosis than the control population.
Resumo:
Peer-reviewed
Resumo:
The emergence of social media has led many companies to adopt them as marketing channels. Yet these media are novel enough that many marketers are still unsure as to how to plan an effective social media marketing strategy, actually oriented towards engaging prospects. In this article, we discuss how to shape a social media strategy. To do so, we show the key concepts and steps involved in the planning process of this type of digital marketing strategy, and how to measure their impact immediately.
Resumo:
The transport of macromolecules, such as low-density lipoprotein (LDL), and their accumulation in the layers of the arterial wall play a critical role in the creation and development of atherosclerosis. Atherosclerosis is a disease of large arteries e.g., the aorta, coronary, carotid, and other proximal arteries that involves a distinctive accumulation of LDL and other lipid-bearing materials in the arterial wall. Over time, plaque hardens and narrows the arteries. The flow of oxygen-rich blood to organs and other parts of the body is reduced. This can lead to serious problems, including heart attack, stroke, or even death. It has been proven that the accumulation of macromolecules in the arterial wall depends not only on the ease with which materials enter the wall, but also on the hindrance to the passage of materials out of the wall posed by underlying layers. Therefore, attention was drawn to the fact that the wall structure of large arteries is different than other vessels which are disease-resistant. Atherosclerosis tends to be localized in regions of curvature and branching in arteries where fluid shear stress (shear rate) and other fluid mechanical characteristics deviate from their normal spatial and temporal distribution patterns in straight vessels. On the other hand, the smooth muscle cells (SMCs) residing in the media layer of the arterial wall respond to mechanical stimuli, such as shear stress. Shear stress may affect SMC proliferation and migration from the media layer to intima. This occurs in atherosclerosis and intimal hyperplasia. The study of blood flow and other body fluids and of heat transport through the arterial wall is one of the advanced applications of porous media in recent years. The arterial wall may be modeled in both macroscopic (as a continuous porous medium) and microscopic scales (as a heterogeneous porous medium). In the present study, the governing equations of mass, heat and momentum transport have been solved for different species and interstitial fluid within the arterial wall by means of computational fluid dynamics (CFD). Simulation models are based on the finite element (FE) and finite volume (FV) methods. The wall structure has been modeled by assuming the wall layers as porous media with different properties. In order to study the heat transport through human tissues, the simulations have been carried out for a non-homogeneous model of porous media. The tissue is composed of blood vessels, cells, and an interstitium. The interstitium consists of interstitial fluid and extracellular fibers. Numerical simulations are performed in a two-dimensional (2D) model to realize the effect of the shape and configuration of the discrete phase on the convective and conductive features of heat transfer, e.g. the interstitium of biological tissues. On the other hand, the governing equations of momentum and mass transport have been solved in the heterogeneous porous media model of the media layer, which has a major role in the transport and accumulation of solutes across the arterial wall. The transport of Adenosine 5´-triphosphate (ATP) is simulated across the media layer as a benchmark to observe how SMCs affect on the species mass transport. In addition, the transport of interstitial fluid has been simulated while the deformation of the media layer (due to high blood pressure) and its constituents such as SMCs are also involved in the model. In this context, the effect of pressure variation on shear stress is investigated over SMCs induced by the interstitial flow both in 2D and three-dimensional (3D) geometries for the media layer. The influence of hypertension (high pressure) on the transport of lowdensity lipoprotein (LDL) through deformable arterial wall layers is also studied. This is due to the pressure-driven convective flow across the arterial wall. The intima and media layers are assumed as homogeneous porous media. The results of the present study reveal that ATP concentration over the surface of SMCs and within the bulk of the media layer is significantly dependent on the distribution of cells. Moreover, the shear stress magnitude and distribution over the SMC surface are affected by transmural pressure and the deformation of the media layer of the aorta wall. This work reflects the fact that the second or even subsequent layers of SMCs may bear shear stresses of the same order of magnitude as the first layer does if cells are arranged in an arbitrary manner. This study has brought new insights into the simulation of the arterial wall, as the previous simplifications have been ignored. The configurations of SMCs used here with elliptic cross sections of SMCs closely resemble the physiological conditions of cells. Moreover, the deformation of SMCs with high transmural pressure which follows the media layer compaction has been studied for the first time. On the other hand, results demonstrate that LDL concentration through the intima and media layers changes significantly as wall layers compress with transmural pressure. It was also noticed that the fraction of leaky junctions across the endothelial cells and the area fraction of fenestral pores over the internal elastic lamina affect the LDL distribution dramatically through the thoracic aorta wall. The simulation techniques introduced in this work can also trigger new ideas for simulating porous media involved in any biomedical, biomechanical, chemical, and environmental engineering applications.