983 resultados para detection cell
Resumo:
Ensuring the security of computers is a non-trivial task, with many techniques used by malicious users to compromise these systems. In recent years a new threat has emerged in the form of networks of hijacked zombie machines used to perform complex distributed attacks such as denial of service and to obtain sensitive data such as password information. These zombie machines are said to be infected with a dasiahotpsila - a malicious piece of software which is installed on a host machine and is controlled by a remote attacker, termed the dasiabotmaster of a botnetpsila. In this work, we use the biologically inspired dendritic cell algorithm (DCA) to detect the existence of a single hot on a compromised host machine. The DCA is an immune-inspired algorithm based on an abstract model of the behaviour of the dendritic cells of the human body. The basis of anomaly detection performed by the DCA is facilitated using the correlation of behavioural attributes such as keylogging and packet flooding behaviour. The results of the application of the DCA to the detection of a single hot show that the algorithm is a successful technique for the detection of such malicious software without responding to normally running programs.
Resumo:
As an immune-inspired algorithm, the Dendritic Cell Algorithm (DCA), produces promising performance in the field of anomaly detection. This paper presents the application of the DCA to a standard data set, the KDD 99 data set. The results of different implementation versions of the DCA, including antigen multiplier and moving time windows, are reported. The real-valued Negative Selection Algorithm (NSA) using constant-sized detectors and the C4.5 decision tree algorithm are used, to conduct a baseline comparison. The results suggest that the DCA is applicable to KDD 99 data set, and the antigen multiplier and moving time windows have the same effect on the DCA for this particular data set. The real-valued NSA with contant-sized detectors is not applicable to the data set. And the C4.5 decision tree algorithm provides a benchmark of the classification performance for this data set.
Resumo:
As one of the newest members in Articial Immune Systems (AIS), the Dendritic Cell Algorithm (DCA) has been applied to a range of problems. These applications mainly belong to the eld of anomaly detection. However, real-time detection, a new challenge to anomaly detection, requires improvement on the real-time capability of the DCA. To assess such capability, formal methods in the research of real-time systems can be employed. The ndings of the assessment can provide guideline for the future development of the algorithm. Therefore, in this paper we use an interval logic based method, named the Duration Calcu- lus (DC), to specify a simplied single-cell model of the DCA. Based on the DC specications with further induction, we nd that each individual cell in the DCA can perform its function as a detector in real-time. Since the DCA can be seen as many such cells operating in parallel, it is potentially capable of performing real-time detection. However, the analysis process of the standard DCA constricts its real-time capability. As a result, we conclude that the analysis process of the standard DCA should be replaced by a real-time analysis component, which can perform periodic analysis for the purpose of real-time detection.
Resumo:
Malicious users try to compromise systems using new techniques. One of the recent techniques used by the attacker is to perform complex distributed attacks such as denial of service and to obtain sensitive data such as password information. These compromised machines are said to be infected with malicious software termed a “bot”. In this paper, we investigate the correlation of behavioural attributes such as keylogging and packet flooding behaviour to detect the existence of a single bot on a compromised machine by applying (1) Spearman’s rank correlation (SRC) algorithm and (2) the Dendritic Cell Algorithm (DCA). We also compare the output results generated from these two methods to the detection of a single bot. The results show that the DCA has a better performance in detecting malicious activities.
Resumo:
Synthetic biology, by co-opting molecular machinery from existing organisms, can be used as a tool for building new genetic systems from scratch, for understanding natural networks through perturbation, or for hybrid circuits that piggy-back on existing cellular infrastructure. Although the toolbox for genetic circuits has greatly expanded in recent years, it is still difficult to separate the circuit function from its specific molecular implementation. In this thesis, we discuss the function-driven design of two synthetic circuit modules, and use mathematical models to understand the fundamental limits of circuit topology versus operating regimes as determined by the specific molecular implementation. First, we describe a protein concentration tracker circuit that sets the concentration of an output protein relative to the concentration of a reference protein. The functionality of this circuit relies on a single negative feedback loop that is implemented via small programmable protein scaffold domains. We build a mass-action model to understand the relevant timescales of the tracking behavior and how the input/output ratios and circuit gain might be tuned with circuit components. Second, we design an event detector circuit with permanent genetic memory that can record order and timing between two chemical events. This circuit was implemented using bacteriophage integrases that recombine specific segments of DNA in response to chemical inputs. We simulate expected population-level outcomes using a stochastic Markov-chain model, and investigate how inferences on past events can be made from differences between single-cell and population-level responses. Additionally, we present some preliminary investigations on spatial patterning using the event detector circuit as well as the design of stationary phase promoters for growth-phase dependent activation. These results advance our understanding of synthetic gene circuits, and contribute towards the use of circuit modules as building blocks for larger and more complex synthetic networks.
Resumo:
Purpose: To evaluate the potential of Lonicera macranthoids Hand. -Mazz. Yulei1 suspension culture system for enhanced production of the main secondary metabolite, chlorogenic acid. Methods: The callus of L. macranthoides Hand.-Mazz. “Yulei1” was suspension cultured in B5 liquid medium supplemented with different plant growth regulators. Biomass accumulation was calculated by weight method and chlorogenic acid production was measured using high performance liquid chromatography (HPLC). HPLC was carried out on C18 analytical column at 35 °C and the detection wavelength was set at 324 nm. Results: The results showed that maximum accumulation of biomass and chlorogenic acid were achieved 15 days after culture growth. The optimized conditions for biomass accumulation and chlorogenic acid production were 50 g/L of inoculum on fresh weight basis, B5 medium supplemented with plant growth regulators, 30 - 40 g/L sucrose and initial medium pH of 5.5. Maximum accumulation of chlorogenic acid and biomass were observed when the culture medium was supplemented with 2.0 mg/L6-BA. Optimal accumulation of chlorogenic acid was observed using combination of hormones 2.0 mg/L 6-Benzyladenine (BA) + 0.5 mg/L2, 4-Dichlorophenoxyacetic acid (2,4-D), while optimal accumulation of biomass was observed with 2.0 mg/L 6-BA + 2.0 mg/L2, 4-D. In addition, phenylalanine also contributed to the synthesis of chlorogenic acid at a concentration > 50 mg/L. Conclusion: Cell suspension cultures of L. macranthoides Hand.-Mazz. “Yulei1” have successfully been established. The findings provide a potential basis for large scale production of chlorogenic acid using cell suspension cultures of L. macranthoides.
Resumo:
Several factors have recently converged, elevating the need for highly parallel diagnostic platforms that have the ability to detect many known, novel, and emerging pathogenic agents simultaneously. Panviral DNA microarrays represent the most robust approach for massively parallel viral surveillance and detection. The Virochip is a panviral DNA microarray that is capable of detecting all known viruses, as well as novel viruses related to known viral families, in a single assay and has been used to successfully identify known and novel viral agents in clinical human specimens. However, the usefulness and the sensitivity of the Virochip platform have not been tested on a set of clinical veterinary specimens with the high degree of genetic variance that is frequently observed with swine virus field isolates. In this report, we investigate the utility and sensitivity of the Virochip to positively detect swine viruses in both cell culture-derived samples and clinical swine samples. The Virochip successfully detected porcine reproductive and respiratory syndrome virus (PRRSV) in serum containing 6.10 × 10(2) viral copies per microliter and influenza A virus in lung lavage fluid containing 2.08 × 10(6) viral copies per microliter. The Virochip also successfully detected porcine circovirus type 2 (PCV2) in serum containing 2.50 × 10(8) viral copies per microliter and porcine respiratory coronavirus (PRCV) in turbinate tissue homogenate. Collectively, the data in this report demonstrate that the Virochip can successfully detect pathogenic viruses frequently found in swine in a variety of solid and liquid specimens, such as turbinate tissue homogenate and lung lavage fluid, as well as antemortem samples, such as serum.
Resumo:
Purpose: The purpose of this study was to develop and validate a multivariate predictive model to detect glaucoma by using a combination of retinal nerve fiber layer (RNFL), retinal ganglion cell-inner plexiform (GCIPL), and optic disc parameters measured using spectral-domain optical coherence tomography (OCT). Methods: Five hundred eyes from 500 participants and 187 eyes of another 187 participants were included in the study and validation groups, respectively. Patients with glaucoma were classified in five groups based on visual field damage. Sensitivity and specificity of all glaucoma OCT parameters were analyzed. Receiver operating characteristic curves (ROC) and areas under the ROC (AUC) were compared. Three predictive multivariate models (quantitative, qualitative, and combined) that used a combination of the best OCT parameters were constructed. A diagnostic calculator was created using the combined multivariate model. Results: The best AUC parameters were: inferior RNFL, average RNFL, vertical cup/disc ratio, minimal GCIPL, and inferior-temporal GCIPL. Comparisons among the parameters did not show that the GCIPL parameters were better than those of the RNFL in early and advanced glaucoma. The highest AUC was in the combined predictive model (0.937; 95% confidence interval, 0.911–0.957) and was significantly (P = 0.0001) higher than the other isolated parameters considered in early and advanced glaucoma. The validation group displayed similar results to those of the study group. Conclusions: Best GCIPL, RNFL, and optic disc parameters showed a similar ability to detect glaucoma. The combined predictive formula improved the glaucoma detection compared to the best isolated parameters evaluated. The diagnostic calculator obtained good classification from participants in both the study and validation groups.
Resumo:
Incorporation of thymidine analogues in replicating DNA, coupled with antibody and fluorophore staining, allows analysis of cell proliferation, but is currently limited to monolayer cultures, fixed cells and end-point assays. We describe a simple microscopy imaging method for live real-time analysis of cell proliferation, S phase progression over several division cycles, effects of anti-proliferative drugs and other applications. It is based on the prominent (~ 1.7-fold) quenching of fluorescence lifetime of a common cell-permeable nuclear stain, Hoechst 33342 upon the incorporation of 5-bromo-2’-deoxyuridine (BrdU) in genomic DNA and detection by fluorescence lifetime imaging microscopy (FLIM). We show that quantitative and accurate FLIM technique allows high-content, multi-parametric dynamic analyses, far superior to the intensity-based imaging. We demonstrate its uses with monolayer cell cultures, complex 3D tissue models of tumor cell spheroids and intestinal organoids, and in physiological study with metformin treatment.
Resumo:
Tese de doutoramento, Ciências Biomédicas, Departamento de Ciências Biomédicas e Medicina, Universidade do Algarve, 2015
Resumo:
Filamentous fungi are a threat to the conservation of Cultural Heritage. Thus, detection and identification of viable filamentous fungi are crucial for applying adequate Safeguard measures. RNA-FISH protocols have been previously applied with this aim in Cultural Heritage samples. However, only hyphae detection was reported in the literature, even if spores and conidia are not only a potential risk to Cultural Heritage but can also be harmful for the health of visitors, curators and restorers. Thus, the aim of this work was to evaluate various permeabilizing strategies for their application in the detection of spores/conidia and hyphae of artworks’ biodeteriogenic filamentous fungi by RNA-FISH. Besides of this, the influence of cell aging on the success of the technique and on the development of fungal autofluorescence (that could hamper the RNA-FISH signal detection) were also investigated. Five common biodeteriogenic filamentous fungi species isolated from biodegradated artworks were used as biological model: Aspergillus niger, Cladosporium sp, Fusarium sp, Penicillium sp. and Exophialia sp. Fungal autofluorescence was only detected in cells harvested from Fusarium sp, and Exophialia sp. old cultures, being aging-dependent. However, it was weak enough to allow autofluorescence/RNA-FISH signals distinction. Thus, autofluorescence was not a limitation for the application of RNA-FISH for detection of the taxa investigated. All the permeabilization strategies tested allowed to detect fungal cells from young cultures by RNA-FISH. However, only the combination of paraformaldehyde with Triton X-100 allowed the detection of conidia/spores and hyphae of old filamentous fungi. All the permeabilization strategies failed in the Aspergillus niger conidia/spores staining, which are known to be particularly difficult to permeabilize. But, even in spite of this, the application of this permeabilization method increased the analytical potential of RNA FISH in Cultural Heritage biodeterioration. Whereas much work is required to validate this RNA-FISH approach for its application in real samples from Cultural Heritage it could represent an important advance for the detection, not only of hyphae but also of spores and conidia of various filamentous fungi taxa by RNA-FISH.
Resumo:
Despite the paramount advances in cancer research, breast cancer (BC) still ranks one of the leading causes of cancer-related death worldwide. Thanks to the screening campaign started in developed countries, BC is often diagnosed at early stages (non-metastatic BC, nmBC), but disease relapse occurrence even after decades and at distant sites is not an uncommon phenomenon. Conversely, metastatic BC (mBC) is considered an incurable disease. The major perpetrators of tumor spread to secondary organs are circulating tumor cells (CTCs), a rare population of cells detectable in the peripheral blood of oncologic patients. In this study, CTCs from patients diagnosed with luminal nmBC and mBC (hormone receptor positive, Human Epidermal Growth Factor Receptor 2 (HER2) negative) were characterized at both phenotypic and molecular levels. To better understand the molecular mechanisms underlying their biology and their metastatic potential, next-generation sequencing (NGS) analyses were performed at single-cell resolution to assess copy number aberrations (CNAs), single nucleotide variants (SNVs) and gene expression profiling. The findings of this study arise hints in CTC detection, and pave the way to new application in CTC research.
Resumo:
The aim of the study was to analyze the frequency of epidermal growth factor receptor (EGFR) mutations in Brazilian non-small cell lung cancer patients and to correlate these mutations with response to benefit of platinum-based chemotherapy in non-small cell lung cancer (NSCLC). Our cohort consisted of prospective patients with NSCLCs who received chemotherapy (platinum derivates plus paclitaxel) at the [UNICAMP], Brazil. EGFR exons 18-21 were analyzed in tumor-derived DNA. Fifty patients were included in the study (25 with adenocarcinoma). EGFR mutations were identified in 6/50 (12 %) NSCLCs and in 6/25 (24 %) adenocarcinomas; representing the frequency of EGFR mutations in a mostly self-reported White (82.0 %) southeastern Brazilian population of NSCLCs. Patients with NSCLCs harboring EGFR exon 19 deletions or the exon 21 L858R mutation were found to have a higher chance of response to platinum-paclitaxel (OR 9.67 [95 % CI 1.03-90.41], p = 0.047). We report the frequency of EGFR activating mutations in a typical southeastern Brazilian population with NSCLC, which are similar to that of other countries with Western European ethnicity. EGFR mutations seem to be predictive of a response to platinum-paclitaxel, and additional studies are needed to confirm or refute this relationship.
Resumo:
Insulin was used as model protein to developed innovative Solid Lipid Nanoparticles (SLNs) for the delivery of hydrophilic biotech drugs, with potential use in medicinal chemistry. SLNs were prepared by double emulsion with the purpose of promoting stability and enhancing the protein bioavailability. Softisan(®)100 was selected as solid lipid matrix. The surfactants (Tween(®)80, Span(®)80 and Lipoid(®)S75) and insulin were chosen applying a 2(2) factorial design with triplicate of central point, evaluating the influence of dependents variables as polydispersity index (PI), mean particle size (z-AVE), zeta potential (ZP) and encapsulation efficiency (EE) by factorial design using the ANOVA test. Therefore, thermodynamic stability, polymorphism and matrix crystallinity were checked by Differential Scanning Calorimetry (DSC) and Wide Angle X-ray Diffraction (WAXD), whereas the effect of toxicity of SLNs was check in HepG2 and Caco-2 cells. Results showed a mean particle size (z-AVE) width between 294.6 nm and 627.0 nm, a PI in the range of 0.425-0.750, ZP about -3 mV, and the EE between 38.39% and 81.20%. After tempering the bulk lipid (mimicking the end process of production), the lipid showed amorphous characteristics, with a melting point of ca. 30 °C. The toxicity of SLNs was evaluated in two distinct cell lines (HEPG-2 and Caco-2), showing to be dependent on the concentration of particles in HEPG-2 cells, while no toxicity in was reported in Caco-2 cells. SLNs were stable for 24 h in in vitro human serum albumin (HSA) solution. The resulting SLNs fabricated by double emulsion may provide a promising approach for administration of protein therapeutics and antigens.
Resumo:
In this study, we investigated the effect of low density lipoprotein receptor (LDLr) deficiency on gap junctional connexin 36 (Cx36) islet content and on the functional and growth response of pancreatic beta-cells in C57BL/6 mice fed a high-fat (HF) diet. After 60 days on regular or HF diet, the metabolic state and morphometric islet parameters of wild-type (WT) and LDLr-/- mice were assessed. HF diet-fed WT animals became obese and hypercholesterolaemic as well as hyperglycaemic, hyperinsulinaemic, glucose intolerant and insulin resistant, characterizing them as prediabetic. Also they showed a significant decrease in beta-cell secretory response to glucose. Overall, LDLr-/- mice displayed greater susceptibility to HF diet as judged by their marked cholesterolaemia, intolerance to glucose and pronounced decrease in glucose-stimulated insulin secretion. HF diet induced similarly in WT and LDLr-/- mice, a significant decrease in Cx36 beta-cell content as revealed by immunoblotting. Prediabetic WT mice displayed marked increase in beta-cell mass mainly due to beta-cell hypertrophy/replication. Nevertheless, HF diet-fed LDLr-/- mice showed no significant changes in beta-cell mass, but lower islet-duct association (neogenesis) and higher beta-cell apoptosis index were seen as compared to controls. The higher metabolic susceptibility to HF diet of LDLr-/- mice may be explained by a deficiency in insulin secretory response to glucose associated with lack of compensatory beta-cell expansion.