932 resultados para delivery model


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Regarding canal management modernization, water savings and water delivery quality, the study presents two automatic canal control approaches of the PI (Proportional and Integral) type: the distant and the local downstream control modes. The two PI controllers are defined, tuned and tested using an hydraulic unsteady flow simulation model, particularly suitable for canal control studies. The PI control parameters are tuned using optimization tools. The simulations are done for a Portuguese prototype canal and the PI controllers are analyzed and compared considering a demand-oriented-canal operation. The paper presents and analyzes the two control modes answers for five different offtake types – gate controlled weir, gate controlled orifice, weir with or without adjustable height and automatic flow adjustable offtake. The simulation results are compared using water volumes performance indicators (considering the demanded, supplied and the effectives water volumes) and a time indicator, defined taking into account the time during which the demand discharges are effective discharges. Regarding water savings, the simulation results for the five offtake types prove that the local downstream control gives the best results (no water operational losses) and that the distant downstream control presents worse results in connection with the automatic flow adjustable offtakes. Considering the water volumes and time performance indicators, the best results are obtained for the automatic flow adjustable offtakes and the worse for the gate controlled orifices, followed by the weir with adjustable height.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fleck and Johnson (Int. J. Mech. Sci. 29 (1987) 507) and Fleck et al. (Proc. Inst. Mech. Eng. 206 (1992) 119) have developed foil rolling models which allow for large deformations in the roll profile, including the possibility that the rolls flatten completely. However, these models require computationally expensive iterative solution techniques. A new approach to the approximate solution of the Fleck et al. (1992) Influence Function Model has been developed using both analytic and approximation techniques. The numerical difficulties arising from solving an integral equation in the flattened region have been reduced by applying an Inverse Hilbert Transform to get an analytic expression for the pressure. The method described in this paper is applicable to cases where there is or there is not a flat region.

Relevância:

20.00% 20.00%

Publicador: