998 resultados para data standardization
Resumo:
The importance of wind power energy for energy and environmental policies has been growing in past recent years. However, because of its random nature over time, the wind generation cannot be reliable dispatched and perfectly forecasted, becoming a challenge when integrating this production in power systems. In addition the wind energy has to cope with the diversity of production resulting from alternative wind power profiles located in different regions. In 2012, Portugal presented a cumulative installed capacity distributed over 223 wind farms [1]. In this work the circular data statistical methods are used to analyze and compare alternative spatial wind generation profiles. Variables indicating extreme situations are analyzed. The hour (s) of the day where the farm production attains its maximum daily production is considered. This variable was converted into circular variable, and the use of circular statistics enables to identify the daily hour distribution for different wind production profiles. This methodology was applied to a real case, considering data from the Portuguese power system regarding the year 2012 with a 15-minutes interval. Six geographical locations were considered, representing different wind generation profiles in the Portuguese system.In this work the circular data statistical methods are used to analyze and compare alternative spatial wind generation profiles. Variables indicating extreme situations are analyzed. The hour (s) of the day where the farm production attains its maximum daily production is considered. This variable was converted into circular variable, and the use of circular statistics enables to identify the daily hour distribution for different wind production profiles. This methodology was applied to a real case, considering data from the Portuguese power system regarding the year 2012 with a 15-minutes interval. Six geographical locations were considered, representing different wind generation profiles in the Portuguese system.
Resumo:
The sensitivity and specificity of an enzyme-linked immunosorbent assay (ELISA) for the detection of circulating antigens from toxic components of Tityus serrulatus scorpion venom was determined in patients stung by T. serrulatus before antivenom administration. Thirty-seven patients were classified as mild cases and 19 as moderate or severe cases. The control absorbance in the venom assay was provided by serum samples from 100 individuals of same socioeconomic group and geographical area who had never been stung by scorpions or treated with horse antisera. The negative cutoff value (mean + 2 SD) corresponded to a venom concentration of 4.8 ng/ml. Three out of the 100 normal sera were positive, resulting in a specificity of 97%. The sensitivity of the ELISA when all cases of scorpion sting were included was 39.3%. When mild cases were excluded, the sensitivity increased to 94.7%. This study showed that this ELISA can be used for the detection of circulating venom toxic antigens in patients with systemic manifestations following. T. serrulatus sting but cannot be used for clinical studies in mild cases of envenoming since the test does not discriminate mild cases from control patients.
Resumo:
O presente trabalho de dissertação teve como objetivo a implementação de metodologias de Lean Management e avaliação do seu impacto no processo de Desenvolvimento de Produto. A abordagem utilizada consistiu em efetuar uma revisão da literatura e levantamento do Estado da Arte para obter a fundamentação teórica necessária à implementação de metodologias Lean. Prosseguiu com o levantamento da situação inicial da organização em estudo ao nível das atividades de desenvolvimento de produto, práticas de gestão documental e operacional e ainda de atividades de suporte através da realização de inquéritos e medições experimentais. Este conhecimento permitiu criar um modelo de referência para a implementação de Lean Management nesta área específica do desenvolvimento de produto. Após implementado, este modelo foi validado pela sua experimentação prática e recolha de indicadores. A implementação deste modelo de referência permitiu introduzir na Unidade de Desenvolvimento de Produto e Sistemas (DPS) da organização INEGI, as bases do pensamento Lean, contribuindo para a criação de um ambiente de Respeito pela Humanidade e de Melhoria Contínua. Neste ambiente foi possível obter ganhos qualitativos e quantitativos nas várias áreas em estudo, contribuindo de forma global para um aumento da eficiência e eficácia da DPS. Prevê-se que este aumento de eficiência represente um aumento da capacidade instalada na Organização, pela redução anual de 2290 horas de desperdício (6.5% da capacidade total da unidade) e pela redução significativa em custos operacionais. Algumas das implementações de melhoria propostas no decorrer deste trabalho, após verificado o seu sucesso, extravasaram a unidade em estudo e foram aplicadas transversalmente à da organização. Foram também obtidos ganhos qualitativos, tais como a normalização de práticas de gestão documental e a centralização e agilização de fluxos de informação. Isso permitiu um aumento de qualidade dos serviços prestados pela redução de correções e retrabalho. Adicionalmente, com o desenvolvimento de uma nova ferramenta que permite a monitorização do estado atual dos projetos a nível da sua percentagem de execução (cumprimento de objetivos), prazos e custos, bem como a estimação das datas de conclusão dos projetos possibilitando o replaneamento do projeto bem como a detecção atempada de desvios. A ferramenta permite também a criação de um histórico que identifica o esforço horário associado à realização das atividades/tarefas das várias áreas de Desenvolvimento de Produto e desta forma pode ser usada como suporte à orçamentação futura de atividades similares. No decorrer do projeto, foram também criados os mecanismos que permitem o cálculo de indicadores das competências técnicas e motivações intrínsecas individuais da equipa DPS. Estes indicadores podem ser usados na definição por parte dos gestores dos projetos da composição das equipas de trabalho, dos executantes de tarefas individuais do projeto e dos destinatários de ações de formação. Com esta informação é expectável que se consiga um maior aproveitamento do potencial humano e como consequência um aumento do desempenho e da satisfação pessoal dos recursos humanos da organização. Este caso de estudo veio demonstrar que o potencial de melhoria dos processos associados ao desenvolvimento de produto através de metodologias de Lean Management é muito significativo, e que estes resultam em ganhos visíveis para a organização bem como para os seus elementos individualmente.
Resumo:
Dissertação apresentada como requisito parcial para a obtenção do grau de Mestre em Estatística e Gestão da Informação
Resumo:
Dissertação apresentada para obtenção do Grau de Doutor em Engenharia do Ambiente pela Universidade Nova de Lisboa,Faculdade de Ciências e Tecnologia
Resumo:
Dissertation submitted in partial fulfilment of the requirements for the Degree of Master of Science in Geospatial Technologies.
Resumo:
More than ever, there is an increase of the number of decision support methods and computer aided diagnostic systems applied to various areas of medicine. In breast cancer research, many works have been done in order to reduce false-positives when used as a double reading method. In this study, we aimed to present a set of data mining techniques that were applied to approach a decision support system in the area of breast cancer diagnosis. This method is geared to assist clinical practice in identifying mammographic findings such as microcalcifications, masses and even normal tissues, in order to avoid misdiagnosis. In this work a reliable database was used, with 410 images from about 115 patients, containing previous reviews performed by radiologists as microcalcifications, masses and also normal tissue findings. Throughout this work, two feature extraction techniques were used: the gray level co-occurrence matrix and the gray level run length matrix. For classification purposes, we considered various scenarios according to different distinct patterns of injuries and several classifiers in order to distinguish the best performance in each case described. The many classifiers used were Naïve Bayes, Support Vector Machines, k-nearest Neighbors and Decision Trees (J48 and Random Forests). The results in distinguishing mammographic findings revealed great percentages of PPV and very good accuracy values. Furthermore, it also presented other related results of classification of breast density and BI-RADS® scale. The best predictive method found for all tested groups was the Random Forest classifier, and the best performance has been achieved through the distinction of microcalcifications. The conclusions based on the several tested scenarios represent a new perspective in breast cancer diagnosis using data mining techniques.
Resumo:
This paper consists in the characterization of medium voltage (MV) electric power consumers based on a data clustering approach. It is intended to identify typical load profiles by selecting the best partition of a power consumption database among a pool of data partitions produced by several clustering algorithms. The best partition is selected using several cluster validity indices. These methods are intended to be used in a smart grid environment to extract useful knowledge about customers’ behavior. The data-mining-based methodology presented throughout the paper consists in several steps, namely the pre-processing data phase, clustering algorithms application and the evaluation of the quality of the partitions. To validate our approach, a case study with a real database of 1.022 MV consumers was used.
Resumo:
This document presents a tool able to automatically gather data provided by real energy markets and to generate scenarios, capture and improve market players’ profiles and strategies by using knowledge discovery processes in databases supported by artificial intelligence techniques, data mining algorithms and machine learning methods. It provides the means for generating scenarios with different dimensions and characteristics, ensuring the representation of real and adapted markets, and their participating entities. The scenarios generator module enhances the MASCEM (Multi-Agent Simulator of Competitive Electricity Markets) simulator, endowing a more effective tool for decision support. The achievements from the implementation of the proposed module enables researchers and electricity markets’ participating entities to analyze data, create real scenarios and make experiments with them. On the other hand, applying knowledge discovery techniques to real data also allows the improvement of MASCEM agents’ profiles and strategies resulting in a better representation of real market players’ behavior. This work aims to improve the comprehension of electricity markets and the interactions among the involved entities through adequate multi-agent simulation.
Resumo:
The study of electricity markets operation has been gaining an increasing importance in the last years, as result of the new challenges that the restructuring process produced. Currently, lots of information concerning electricity markets is available, as market operators provide, after a period of confidentiality, data regarding market proposals and transactions. These data can be used as source of knowledge to define realistic scenarios, which are essential for understanding and forecast electricity markets behavior. The development of tools able to extract, transform, store and dynamically update data, is of great importance to go a step further into the comprehension of electricity markets and of the behaviour of the involved entities. In this paper an adaptable tool capable of downloading, parsing and storing data from market operators’ websites is presented, assuring constant updating and reliability of the stored data.
Resumo:
Electricity markets worldwide suffered profound transformations. The privatization of previously nationally owned systems; the deregulation of privately owned systems that were regulated; and the strong interconnection of national systems, are some examples of such transformations [1, 2]. In general, competitive environments, as is the case of electricity markets, require good decision-support tools to assist players in their decisions. Relevant research is being undertaken in this field, namely concerning player modeling and simulation, strategic bidding and decision-support.
Resumo:
This paper presents an electricity medium voltage (MV) customer characterization framework supportedby knowledge discovery in database (KDD). The main idea is to identify typical load profiles (TLP) of MVconsumers and to develop a rule set for the automatic classification of new consumers. To achieve ourgoal a methodology is proposed consisting of several steps: data pre-processing; application of severalclustering algorithms to segment the daily load profiles; selection of the best partition, corresponding tothe best consumers’ segmentation, based on the assessments of several clustering validity indices; andfinally, a classification model is built based on the resulting clusters. To validate the proposed framework,a case study which includes a real database of MV consumers is performed.
Resumo:
The study of Electricity Markets operation has been gaining an increasing importance in the last years, as result of the new challenges that the restructuring produced. Currently, lots of information concerning Electricity Markets is available, as market operators provide, after a period of confidentiality, data regarding market proposals and transactions. These data can be used as source of knowledge, to define realistic scenarios, essential for understanding and forecast Electricity Markets behaviour. The development of tools able to extract, transform, store and dynamically update data, is of great importance to go a step further into the comprehension of Electricity Markets and the behaviour of the involved entities. In this paper we present an adaptable tool capable of downloading, parsing and storing data from market operators’ websites, assuring actualization and reliability of stored data.
Resumo:
Electric power networks, namely distribution networks, have been suffering several changes during the last years due to changes in the power systems operation, towards the implementation of smart grids. Several approaches to the operation of the resources have been introduced, as the case of demand response, making use of the new capabilities of the smart grids. In the initial levels of the smart grids implementation reduced amounts of data are generated, namely consumption data. The methodology proposed in the present paper makes use of demand response consumers’ performance evaluation methods to determine the expected consumption for a given consumer. Then, potential commercial losses are identified using monthly historic consumption data. Real consumption data is used in the case study to demonstrate the application of the proposed method.
Resumo:
Dissertation submitted in partial fulfilment of the requirements for the Degree of Master of Science in Geospatial Technologies.