945 resultados para cytotoxic T lymphocyte antigen 4
Resumo:
The function of antigen-specific CD8+ T cells, which may protect against both infectious and malignant diseases, can be impaired by ligation of their inhibitory receptors, which include CTL-associated protein 4 (CTLA-4) and programmed cell death 1 (PD-1). Recently, B and T lymphocyte attenuator (BTLA) was identified as a novel inhibitory receptor with structural and functional similarities to CTLA-4 and PD-1. BTLA triggering leads to decreased antimicrobial and autoimmune T cell responses in mice, but its functions in humans are largely unknown. Here we have demonstrated that as human viral antigen-specific CD8+ T cells differentiated from naive to effector cells, their surface expression of BTLA was gradually downregulated. In marked contrast, human melanoma tumor antigen-specific effector CD8+ T cells persistently expressed high levels of BTLA in vivo and remained susceptible to functional inhibition by its ligand herpes virus entry mediator (HVEM). Such persistence of BTLA expression was also found in tumor antigen-specific CD8+ T cells from melanoma patients with spontaneous antitumor immune responses and after conventional peptide vaccination. Remarkably, addition of CpG oligodeoxynucleotides to the vaccine formulation led to progressive downregulation of BTLA in vivo and consequent resistance to BTLA-HVEM-mediated inhibition. Thus, BTLA activation inhibits the function of human CD8+ cancer-specific T cells, and appropriate immunotherapy may partially overcome this inhibition.
Resumo:
Abstract The aim of this study was to assess the effects of a series of different surface coated quantum dots (QDs) (organic, carboxylated [COOH] and amino [NH(2)] polytethylene glycol [PEG]) on J774.A1 macrophage cell viability and to further determine which part of the QDs cause such toxicity. Cytotoxic examination (MTT assay and LDH release) showed organic QDs to induce significant cytotoxicity up to 48 h, even at a low particle concentration (20 nM), whilst both COOH and NH(2) (PEG) QDs caused reduced cell viability and cell membrane permeability after 24 and 48 h exposure at 80 nM. Subsequent analysis of the elements that constitute the QD core, core/shell and (organic QD) surface coating showed that the surface coating drives QD toxicity. Elemental analysis (ICP-AES) after 48 h, however, also observed a release of Cd from organic QDs. In conclusion, both the specific surface coating and core material can have a significant impact on QD toxicity.
Resumo:
Three new steroid saponins (3beta,25R)-spirost-5-en-3-yl 6-deoxy-alpha-L-mannopyranosyl-(1-->2)-[beta-D-glucopyranosyl-(1-->4)-6-deoxy-alpha-L-mannopyranosyl-(1-->3)]-beta-D-glucopyranoside (1), (3beta,22R,25R)-26-(beta-D-glucopyranosyloxy)-22-hydroxyfurost-5-en-3-yl 6-deoxy-alpha-L-mannopyranosyl-(1-->2)-[6-deoxy-alpha-L-mannopyranosyl-(1-->3)]-beta-D-glucopyranoside (3), and (3beta,22R,25R)-26-(beta-D-glucopyranosyloxy)-22-hydroxyfurost-5-en-3-yl 6-deoxy-alpha-L-mannopyranosyl-(1-->2)-[beta-D-glucopyranosyl-(1-->4)-6-deoxy-alpha-L-mannopyranosyl-(1-->3)]-beta-D-glucopyranoside (5), as well as the new pregnane glycoside (3beta,16beta)-3-{[6-deoxy-alpha-L-mannopyranosyl-(1-->2)-[6-deoxy-alpha-L-mannopyranosyl-(1-->3)]-beta-D-glucopyranosyl]oxy}-20-oxopregn-5-en-16-yl (4R)-5-(beta-D-glucopyranosyloxy)-4-methylpentanoate (6), were isolated from the rhizomes of Tacca integrifolia together with two known (25R) configurated steroid saponins (3beta,25R)-spirost-5-en-3-yl 6-deoxy-alpha-L-mannopyranosyl-(1-->2)-[6-deoxy-alpha-L-mannopyranosyl-(1-->3)]-beta-D-glucopyranoside (2) and (3beta,22R,25R)-26-(beta-D-glucopyranosyloxy)-22-methoxyfurost-5-en-3-yl 6-deoxy-alpha-L-mannopyranosyl-(1-->2)-[6-deoxy-alpha-L-mannopyranosyl-(1-->3)]-beta-D-glucopyranoside (4). The cytotoxic activity of the isolated compounds was evaluated in HeLa cells and showed the highest cytotoxicity value for compound 2 with an IC(50) of 1.2+/-0.4 muM. Intriguingly, while compounds 1-5 exhibited similar cytotoxic properties between 1.2+/-0.4 (2) and 4.0+/-0.6 muM (5), only compound 2 showed a significant microtubule-stabilizing activity in vitro.
Resumo:
Designed Ankyrin Repeat Proteins (DARPins) represent a novel class of binding molecules. Their favorable biophysical properties such as high affinity, stability and expression yields make them ideal candidates for tumor targeting. Here, we describe the selection of DARPins specific for the tumor-associated antigen epithelial cell adhesion molecule (EpCAM), an approved therapeutic target on solid tumors. We selected DARPins from combinatorial libraries by both phage display and ribosome display and compared their binding on tumor cells. By further rounds of random mutagenesis and ribosome display selection, binders with picomolar affinity were obtained that were entirely monomeric and could be expressed at high yields in the cytoplasm of Escherichia coli. One of the binders, denoted Ec1, bound to EpCAM with picomolar affinity (K(d)=68 pM), and another selected DARPin (Ac2) recognized a different epitope on EpCAM. Through the use of a variety of bivalent and tetravalent arrangements with these DARPins, the off-rate on cells was further improved by up to 47-fold. All EpCAM-specific DARPins were efficiently internalized by receptor-mediated endocytosis, which is essential for intracellular delivery of anticancer agents to tumor cells. Thus, using EpCAM as a target, we provide evidence that DARPins can be conveniently selected and rationally engineered to high-affinity binders of various formats for tumor targeting.
Resumo:
Understanding how nanoparticles may affect immune responses is an essential prerequisite to developing novel clinical applications. To investigate nanoparticle-dependent outcomes on immune responses, dendritic cells (DCs) were treated with model biomedical poly(vinylalcohol)-coated super-paramagnetic iron oxide nanoparticles (PVA-SPIONs). PVA-SPIONs uptake by human monocyte-derived DCs (MDDCs) was analyzed by flow cytometry (FACS) and advanced imaging techniques. Viability, activation, function, and stimulatory capacity of MDDCs were assessed by FACS and an in vitro CD4+ T cell assay. PVA-SPION uptake was dose-dependent, decreased by lipopolysaccharide (LPS)-induced MDDC maturation at higher particle concentrations, and was inhibited by cytochalasin D pre-treatment. PVA-SPIONs did not alter surface marker expression (CD80, CD83, CD86, myeloid/plasmacytoid DC markers) or antigen-uptake, but decreased the capacity of MDDCs to process antigen, stimulate CD4+ T cells, and induce cytokines. The decreased antigen processing and CD4+ T cell stimulation capability of MDDCs following PVA-SPION treatment suggests that MDDCs may revert to a more functionally immature state following particle exposure.
Resumo:
In order to achieve host cell entry, the apicomplexan parasite Neospora caninum relies on the contents of distinct organelles, named micronemes, rhoptries and dense granules, which are secreted at defined timepoints during and after host cell entry. It was shown previously that a vaccine composed of a mixture of three recombinant antigens, corresponding to the two microneme antigens NcMIC1 and NcMIC3 and the rhoptry protein NcROP2, prevented disease and limited cerebral infection and transplacental transmission in mice. In this study, we selected predicted immunogenic domains of each of these proteins and created four different chimeric antigens, with the respective domains incorporated into these chimers in different orders. Following vaccination, mice were challenged intraperitoneally with 2 × 10(6)N. caninum tachzyoites and were then carefully monitored for clinical symptoms during 4 weeks post-infection. Of the four chimeric antigens, only recNcMIC3-1-R provided complete protection against disease with 100% survivors, compared to 40-80% of survivors in the other groups. Serology did not show any clear differences in total IgG, IgG1 and IgG2a levels between the different treatment groups. Vaccination with all four chimeric variants generated an IL-4 biased cytokine expression, which then shifted to an IFN-γ-dominated response following experimental infection. Sera of recNcMIC3-1-R vaccinated mice reacted with each individual recombinant antigen, as well as with three distinct bands in Neospora extracts with similar Mr as NcMIC1, NcMIC3 and NcROP2, and exhibited distinct apical labeling in tachyzoites. These results suggest that recNcMIC3-1-R is an interesting chimeric vaccine candidate and should be followed up in subsequent studies in a fetal infection model.
Resumo:
Control of contagious bovine pleuropneumonia (CBPP), caused by Mycoplasma mycoides subsp. mycoides Small Colony (MmmSC), remains an important goal in Africa. Subunit vaccines triggering B and T-cell responses could represent a promising approach. To this aim, the T-cell immunogenicity of four MmmSC lipoproteins (LppA, LppB, LppC and LppQ), present in African strains and able to elicit humoral response, was evaluated. In vitro assays revealed that only LppA was recognized by lymph node lymphocytes taken from three cattle, 3 weeks after MmmSC exposure. Maintenance of the LppA-specific response, relying on CD4 T-cells and IFN gamma production, was then demonstrated 1 year after infection. LppA is thus an important target for the CD4 T-cells generated early after MmmSC infection and persisting in the lymph nodes of recovered cattle. Its role as a protective antigen and ability to in vivo trigger both arms of the host immune response remain to be evaluated.
Resumo:
Cytomegalovirus (CMV) reactivation in the retina of immunocompromized patients is a cause of significant morbidity as it can lead to blindness. The adaptive immune response is critical in controlling murine CMV (MCMV) infection in MCMV-susceptible mouse strains. CD8(+) T cells limit systemic viral replication in the acute phase of infection and are essential to contain latent virus. In this study, we provide the first evaluation of the kinetics of anti-viral T-cell responses after subretinal infection with MCMV. The acute response was characterized by a rapid expansion phase, with infiltration of CD8(+) T cells into the infected retina, followed by a contraction phase. MCMV-specific T cells displayed biphasic kinetics with a first peak at day 12 and contraction by day 18 followed by sustained recruitment of these cells into the retina at later time points post-infection. MCMV-specific CD8(+) T cells were also observed in the draining cervical lymph nodes and the spleen. Presentation of viral epitopes and activation of CD8(+) T cells was widespread and could be detected in the spleen and the draining lymph nodes, but not in the retina or iris. Moreover, after intraocular infection, antigen-specific cytotoxic activity was detectable and exhibited kinetics equivalent to those observed after intraperitoneal infection with the same viral dose. These data provide novel insights of how and where immune responses are initiated when viral antigen is present in the subretinal space.
Resumo:
The major route of transmission of Neospora caninum in cattle is transplacentally from an infected cow to its progeny. Therefore, a vaccine should be able to prevent both the horizontal transmission from contaminated food or water and the vertical transmission. We have previously shown that a chimeric vaccine composed of predicted immunogenic epitopes of NcMIC3, NcMIC1 and NcROP2 (recNcMIC3-1-R) significantly reduced the cerebral infection in BALB/c mice. In this study, mice were first vaccinated, then mated and pregnant mice were challenged with 2×10(6)N. caninum tachyzoites at day 7-9 of pregnancy. Partial protection was only observed in the mice vaccinated with a tachyzoite crude protein extract but no protection against vertical transmission or cerebral infection in the dams was observed in the group vaccinated with recNcMIC3-1-R. Serological and cytokine analysis showed an overall lower cytokine level in sera associated with a dominant IL-4 expression and high IgG1 titers. Thus, the Th2-type immune response observed in the pregnant mice was not protective against experimental neosporosis, in contrary to the mixed Th1-/Th2-type immune response observed in the non-pregnant mouse model. These results demonstrate that the immunomodulation that occurs during pregnancy was not favorable for the protection against N. caninum infection conferred by vaccination with recNcMIC3-1-R.
Resumo:
Recent advances in the identification of susceptibility genes and environmental exposures provide broad support for a post-infectious autoimmune basis for narcolepsy/hypocretin (orexin) deficiency. We genotyped loci associated with other autoimmune and inflammatory diseases in 1,886 individuals with hypocretin-deficient narcolepsy and 10,421 controls, all of European ancestry, using a custom genotyping array (ImmunoChip). Three loci located outside the Human Leukocyte Antigen (HLA) region on chromosome 6 were significantly associated with disease risk. In addition to a strong signal in the T cell receptor alpha (TRA@), variants in two additional narcolepsy loci, Cathepsin H (CTSH) and Tumor necrosis factor (ligand) superfamily member 4 (TNFSF4, also called OX40L), attained genome-wide significance. These findings underline the importance of antigen presentation by HLA Class II to T cells in the pathophysiology of this autoimmune disease.
Resumo:
Humoral immunity in response to an octavalent O-polysaccharide-toxin A conjugate Pseudomonas aeruginosa vaccine is well studied, and a phase III clinical study in cystic fibrosis (CF) patients is currently ongoing. In contrast, little is known about cellular immunity induced by this vaccine. Fifteen healthy volunteers were immunized on days 1 and 60. Parameters of cellular immunity were studied before vaccination on day 1, and on day 74. Analyses included flow cytometry of whole blood and antigen-induced proliferation of and cytokine production by lymphocyte cultures. The effects of immunization on the composition of peripheral blood lymphocytes as determined by flow cytometry were minor. In contrast, after immunization a highly significant increase of proliferation in response to stimulation with detoxified toxin A was noted: the stimulation index rose from 1.4 on day 1 to 42.2 on day 74 (restimulation with 0.4 microg/ml; P = 0.003). Immunization led to significant production of interferon (IFN)-gamma and tumour necrosis factor (TNF)-alpha by antigen-stimulated lymphocytes. In contrast, no significant induction of interleukin (IL)-4 or IL-10 was observed. In conclusion, immunization of healthy volunteers led to activation of cellular immunity including strong antigen-specific proliferation and cytokine production. In CF patients priming of the cellular immune system towards a Th1-like pattern would be of potential advantage. Therefore, confirmatory analyses in immunized CF patients with and without chronic infection with P. aeruginosa are foreseen.
Resumo:
Imatinib mesylate (imatinib) is a potent inhibitor of defined tyrosine kinases (TKs) and is effective in the treatment of malignancies characterized by constitutive activation of these TKs such as chronic myeloid leukemia and gastrointestinal stromal tumors. TKs also play an important role in T-cell receptor (TCR) signal transduction. Inhibitory as well as stimulating effects of imatinib on T cells and dendritic cells have been described. Here, we analyzed the effects of imatinib treatment on antiviral immune responses in vivo. Primary cytotoxic T-cell (CTL) responses were not impaired in imatinib-treated mice after infection with lymphocytic choriomeningitis virus (LCMV) or after immunization with a tumor cell line expressing LCMV glycoprotein (LCMV-GP). Similarly, neutralizing antibody responses to vesicular stomatitis virus (VSV) were not affected. In contrast, secondary expansion of LCMV-specific memory CTLs was reduced in vitro and in vivo, resulting in impaired protection against reinfection. In addition, imatinib treatment delayed the onset of diabetes in a CTL-induced diabetes model. In summary, imatinib treatment in vivo selectively inhibits the expansion of antigen-experienced memory CTLs without affecting primary T- or B-cell responses. Therefore, imatinib may be efficacious in the suppression of CTL-mediated immunopathology in autoimmune diseases without the risk of acquiring viral infections.
Prostate specific antigen expression does not necessarily correlate with prostate cancer cell growth
Resumo:
PURPOSE: The antiproliferative effects of pharmacological agents used for androgen ablative therapy in prostate cancer, including goserelin, bicalutamide and cyproterone acetate (Fluka Chemie, Buchs, Switzerland), were tested in vitro. It was determined whether they affected prostate specific antigen mRNA and protein expression independent of growth inhibition. MATERIALS AND METHODS: Goserelin, bicalutamide (AstraZeneca, Zug, Switzerland) and cyproterone acetate were added to prostate specific antigen expressing, androgen dependent LNCaP and androgen independent C4-2 cell line (Urocor, Oklahoma City, Oklahoma) cultures. Proliferation was determined by the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazoliumbromide assay (Roche, Mannheim, Germany). Prostate specific antigen mRNA expression was assessed by quantitative real-time polymerase chain reaction. Secreted prostate specific antigen protein levels were quantified by microparticle enzyme-immunoassay. RESULTS: Goserelin inhibited cell growth and prostate specific antigen protein secretion in LNCaP and C4-2 cells. Prostate specific antigen mRNA expression was not decreased. Bicalutamide did not affect cell growth or prostate specific antigen mRNA expression in LNCaP or C4-2 cells, although it significantly decreased prostate specific antigen protein secretion in LNCaP and to a lesser extent in C4-2 cells. Cyproterone acetate decreased the growth of C4-2 but not of LNCaP cells. It did not affect prostate specific antigen mRNA or protein expression in either cell line. CONCLUSIONS: Prostate specific antigen expression does not necessarily correlate with cell growth. Without a substantial effect on cell growth bicalutamide lowers prostate specific antigen synthesis, whereas cyproterone acetate decreases cell growth with no effect on prostate specific antigen secretion. Prostate specific antigen expression may be influenced by growth inhibition but also by altered mRNA and protein levels depending on the agent, its concentration and the cell line evaluated. For interpreting clinical trials prostate specific antigen is not necessarily a surrogate end point marker for a treatment effect on prostate cancer cell growth.
Resumo:
BACKGROUND: The deletion of three adjacent nucleotides in an exon may cause the lack of a single amino acid, while the protein sequence remains otherwise unchanged. Only one such in-frame deletion is known in the two RH genes, represented by the RHCE allele ceBP expressing a "very weak e antigen." STUDY DESIGN AND METHODS: Blood donor samples were recognized because of discrepant results of D phenotyping. Six samples came from Switzerland and one from Northern Germany. The molecular structures were determined by genomic DNA nucleotide sequencing of RHD. RESULTS: Two different variant D antigens were explained by RHD alleles harboring one in-frame triplet deletion each. Both single-amino-acid deletions led to partial D phenotypes with weak D antigen expression. Because of their D category V-like phenotypes, the RHD(Arg229del) allele was dubbed DVL-1 and the RHD(Lys235del) allele DVL-2. These in-frame triplet deletions are located in GAGAA or GAAGA repeats of the RHD exon 5. CONCLUSION: Partial D may be caused by a single-amino-acid deletion in RhD. The altered RhD protein segments in DVL types are adjacent to the extracellular loop 4, which constitutes one of the most immunogenic parts of the D antigen. These RhD protein segments are also altered in all DV, which may explain the similarity in phenotype. At the nucleotide level, the triplet deletions may have resulted from replication slippage. A total of nine amino acid positions in an Rhesus protein may be affected by this mechanism.