950 resultados para cross validation


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Advanced Very High Resolution Radiometer (AVHRR) carried on board the National Oceanic and Atmospheric Administration (NOAA) and the Meteorological Operational Satellite (MetOp) polar orbiting satellites is the only instrument offering more than 25 years of satellite data to analyse aerosols on a daily basis. The present study assessed a modified AVHRR aerosol optical depth τa retrieval over land for Europe. The algorithm might also be applied to other parts of the world with similar surface characteristics like Europe, only the aerosol properties would have to be adapted to a new region. The initial approach used a relationship between Sun photometer measurements from the Aerosol Robotic Network (AERONET) and the satellite data to post-process the retrieved τa. Herein a quasi-stand-alone procedure, which is more suitable for the pre-AERONET era, is presented. In addition, the estimation of surface reflectance, the aerosol model, and other processing steps have been adapted. The method's cross-platform applicability was tested by validating τa from NOAA-17 and NOAA-18 AVHRR at 15 AERONET sites in Central Europe (40.5° N–50° N, 0° E–17° E) from August 2005 to December 2007. Furthermore, the accuracy of the AVHRR retrieval was related to products from two newer instruments, the Medium Resolution Imaging Spectrometer (MERIS) on board the Environmental Satellite (ENVISAT) and the Moderate Resolution Imaging Spectroradiometer (MODIS) on board Aqua/Terra. Considering the linear correlation coefficient R, the AVHRR results were similar to those of MERIS with even lower root mean square error RMSE. Not surprisingly, MODIS, with its high spectral coverage, gave the highest R and lowest RMSE. Regarding monthly averaged τa, the results were ambiguous. Focusing on small-scale structures, R was reduced for all sensors, whereas the RMSE solely for MERIS substantially increased. Regarding larger areas like Central Europe, the error statistics were similar to the individual match-ups. This was mainly explained with sampling issues. With the successful validation of AVHRR we are now able to concentrate on our large data archive dating back to 1985. This is a unique opportunity for both climate and air pollution studies over land surfaces.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objectives To describe, using routine data in selected countries, chlamydia control activities and rates of chlamydia infection, pelvic inflammatory disease (PID), ectopic pregnancy and infertility and to compare trends in chlamydia positivity with rates of PID and ectopic pregnancy. Methods Cross-national comparison including national data from Australia, Denmark, the Netherlands, New Zealand, Sweden and Switzerland. Routine data sources about chlamydia diagnosis and testing and International Classification of Disease-10 coded diagnoses of PID, ectopic pregnancy and infertility in women aged 15–39 years from 1999 to 2008 were described. Trends over time and relevant associations were examined using Poisson regression. Results Opportunistic chlamydia testing was recommended in all countries except Switzerland, but target groups differed. Rates of chlamydia testing were highest in New Zealand. Chlamydia positivity was similar in all countries with available data (Denmark, New Zealand and Sweden) and increased over time. Increasing chlamydia positivity rates were associated with decreasing PID rates in Denmark and Sweden and with decreasing ectopic pregnancy rates in Denmark, New Zealand and Sweden. Ectopic pregnancy rates appeared to increase over time in 15–19-year-olds in several countries. Trends in infertility diagnoses were very variable. Conclusions The intensity of recommendations about chlamydia control varied between countries but was not consistently related to levels of chlamydia diagnosis or testing. Relationships between levels of chlamydia infection and complication rates between or within countries over time were not straightforward. Development and validation of indicators of chlamydia-related morbidity that can be compared across countries and over time should be pursued.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this in vitro study was to assess the agreement among four techniques used as gold standard for the validation of methods for occlusal caries detection. Sixty-five human permanent molars were selected and one site in each occlusal surface was chosen as the test site. The teeth were cut and prepared according to each technique: stereomicroscopy without coloring (1), dye enhancement with rhodamine B (2) and fuchsine/acetic light green (3), and semi-quantitative microradiography (4). Digital photographs from each prepared tooth were assessed by three examiners for caries extension. Weighted kappa, as well as Friedman's test with multiple comparisons, was performed to compare all techniques and verify statistical significant differences. Results: kappa values varied from 0.62 to 0.78, the latter being found by both dye enhancement methods. Friedman's test showed statistical significant difference (P < 0.001) and multiple comparison identified these differences among all techniques, except between both dye enhancement methods (rhodamine B and fuchsine/acetic light green). Cross-tabulation showed that the stereomicroscopy overscored the lesions. Both dye enhancement methods showed a good agreement, while stereomicroscopy overscored the lesions. Furthermore, the outcome of caries diagnostic tests may be influenced by the validation method applied. Dye enhancement methods seem to be reliable as gold standard methods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Context-Daytime sleepiness in kidney transplant recipients has emerged as a potential predictor of impaired adherence to the immunosuppressive medication regimen. Thus there is a need to assess daytime sleepiness in clinical practice and transplant registries.Objective-To evaluate the validity of a single-item measure of daytime sleepiness integrated in the Swiss Transplant Cohort Study (STCS), using the American Educational Research Association framework.Methods-Using a cross-sectional design, we enrolled a convenience sample of 926 home-dwelling kidney transplant recipients (median age, 59.69 years; 25%-75% quartile [Q25-Q75], 50.27-59.69), 63% men; median time since transplant 9.42 years (Q25-Q75, 4.93-15.85). Daytime sleepiness was assessed by using a single item from the STCS and the 8 items of the validated Epworth Sleepiness Scale. Receiver operating characteristic curve analysis was used to determine the cutoff for the STCS daytime sleepiness item against the Epworth Sleepiness Scale score.Results-Based on the receiver operating characteristic curve analysis, a score greater than 4 on the STCS daytime sleepiness item is recommended to detect daytime sleepiness. Content validity was high as all expert reviews were unanimous. Concurrent validity was moderate (Spearman ϱ, 0.531; P< .001) and convergent validity with depression and poor sleep quality although low, was significant (ϱ, 0.235; P<.001 and ϱ, 0.318, P=.002, respectively). For the group difference validity: kidney transplant recipients with moderate, severe, and extremely severe depressive symptom scores had 3.4, 4.3, and 5.9 times higher odds of having daytime sleepiness, respectively, as compared with recipients without depressive symptoms.Conclusion-The accumulated evidence provided evidence for the validity of the STCS daytime sleepiness item as a simple screening scale for daytime sleepiness.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

MIPAS observations of temperature, water vapor, and ozone in October 2009 as derived with the scientific level-2 processor run by Karlsruhe Institute of Technology (KIT), Institute for Meteorology and Climate Research (IMK) and CSIC, Instituto de Astrofísica de Andalucía (IAA) and retrieved from version 4.67 level-1b data have been compared to co-located field campaign observations obtained during the MOHAVE-2009 campaign at the Table Mountain Facility near Pasadena, California in October 2009. The MIPAS measurements were validated regarding any potential biases of the profiles, and with respect to their precision estimates. The MOHAVE-2009 measurement campaign provided measurements of atmospheric profiles of temperature, water vapor/relative humidity, and ozone from the ground to the mesosphere by a suite of instruments including radiosondes, ozonesondes, frost point hygrometers, lidars, microwave radiometers and Fourier transform infra-red (FTIR) spectrometers. For MIPAS temperatures (version V4O_T_204), no significant bias was detected in the middle stratosphere; between 22 km and the tropopause MIPAS temperatures were found to be biased low by up to 2 K, while below the tropopause, they were found to be too high by the same amount. These findings confirm earlier comparisons of MIPAS temperatures to ECMWF data which revealed similar differences. Above 12 km up to 45 km, MIPAS water vapor (version V4O_H2O_203) is well within 10% of the data of all correlative instruments. The well-known dry bias of MIPAS water vapor above 50 km due to neglect of non-LTE effects in the current retrievals has been confirmed. Some instruments indicate that MIPAS water vapor might be biased high by 20 to 40% around 10 km (or 5 km below the tropopause), but a consistent picture from all comparisons could not be derived. MIPAS ozone (version V4O_O3_202) has a high bias of up to +0.9 ppmv around 37 km which is due to a non-identified continuum like radiance contribution. No further significant biases have been detected. Cross-comparison to co-located observations of other satellite instruments (Aura/MLS, ACE-FTS, AIRS) is provided as well.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVES: The goal of the present study was to compare the accuracy of in vivo tissue characterization obtained by intravascular ultrasound (IVUS) radiofrequency (RF) data analysis, known as Virtual Histology (VH), to the in vitro histopathology of coronary atherosclerotic plaques obtained by directional coronary atherectomy. BACKGROUND: Vulnerable plaque leading to acute coronary syndrome (ACS) has been associated with specific plaque composition, and its characterization is an important clinical focus. METHODS: Virtual histology IVUS images were performed before and after a single debulking cut using directional coronary atherectomy. Debulking region of in vivo histology image was predicted by comparing pre- and post-debulking VH images. Analysis of VH images with the corresponding tissue cross section was performed. RESULTS: Fifteen stable angina pectoris (AP) and 15 ACS patients were enrolled. The results of IVUS RF data analysis correlated well with histopathologic examination (predictive accuracy from all patients data: 87.1% for fibrous, 87.1% for fibro-fatty, 88.3% for necrotic core, and 96.5% for dense calcium regions, respectively). In addition, the frequency of necrotic core was significantly higher in the ACS group than in the stable AP group (in vitro histopathology: 22.6% vs. 12.6%, p = 0.02; in vivo virtual histology: 24.5% vs. 10.4%, p = 0.002). CONCLUSIONS: Correlation of in vivo IVUS RF data analysis with histopathology shows a high accuracy. In vivo IVUS RF data analysis is a useful modality for the classification of different types of coronary components, and may play an important role in the detection of vulnerable plaque.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Trichinellosis is a zoonotic disease in humans caused by Trichinella spp. According to international regulations and guidelines, serological surveillance can be used to demonstrate the absence of Trichinella spp. in a defined domestic pig population. Most enzyme-linked immunosorbent assay (ELISA) tests presently available do not yield 100% specificity, and therefore, a complementary test is needed to confirm the diagnosis of any initial ELISA seropositivity. The goal of the present study was to evaluate the sensitivity and specificity of a Western Blot assay based on somatic Trichinella spiralis muscle stage (L1) antigen using Bayesian modeling techniques. A total of 295 meat juice and serum samples from pigs negative for Trichinella larvae by artificial digestion, including 74 potentially cross-reactive sera of pigs with other nematode infections, and 93 meat juice samples from pigs infected with Trichinella larvae were included in the study. The diagnostic sensitivity and specificity of the Western Blot were ranged from 95.8% to 96.0% and from 99.5% to 99.6%, respectively. A sensitivity analysis showed that the model outcomes were hardly influenced by changes in the prior distributions, providing a high confidence in the outcomes of the models. This validation study demonstrated that the Western Blot is a suitable method to confirm samples that reacted positively in an initial ELISA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVES This study sought to validate the Logistic Clinical SYNTAX (Synergy Between Percutaneous Coronary Intervention With Taxus and Cardiac Surgery) score in patients with non-ST-segment elevation acute coronary syndromes (ACS), in order to further legitimize its clinical application. BACKGROUND The Logistic Clinical SYNTAX score allows for an individualized prediction of 1-year mortality in patients undergoing contemporary percutaneous coronary intervention. It is composed of a "Core" Model (anatomical SYNTAX score, age, creatinine clearance, and left ventricular ejection fraction), and "Extended" Model (composed of an additional 6 clinical variables), and has previously been cross validated in 7 contemporary stent trials (>6,000 patients). METHODS One-year all-cause death was analyzed in 2,627 patients undergoing percutaneous coronary intervention from the ACUITY (Acute Catheterization and Urgent Intervention Triage Strategy) trial. Mortality predictions from the Core and Extended Models were studied with respect to discrimination, that is, separation of those with and without 1-year all-cause death (assessed by the concordance [C] statistic), and calibration, that is, agreement between observed and predicted outcomes (assessed with validation plots). Decision curve analyses, which weight the harms (false positives) against benefits (true positives) of using a risk score to make mortality predictions, were undertaken to assess clinical usefulness. RESULTS In the ACUITY trial, the median SYNTAX score was 9.0 (interquartile range 5.0 to 16.0); approximately 40% of patients had 3-vessel disease, 29% diabetes, and 85% underwent drug-eluting stent implantation. Validation plots confirmed agreement between observed and predicted mortality. The Core and Extended Models demonstrated substantial improvements in the discriminative ability for 1-year all-cause death compared with the anatomical SYNTAX score in isolation (C-statistics: SYNTAX score: 0.64, 95% confidence interval [CI]: 0.56 to 0.71; Core Model: 0.74, 95% CI: 0.66 to 0.79; Extended Model: 0.77, 95% CI: 0.70 to 0.83). Decision curve analyses confirmed the increasing ability to correctly identify patients who would die at 1 year with the Extended Model versus the Core Model versus the anatomical SYNTAX score, over a wide range of thresholds for mortality risk predictions. CONCLUSIONS Compared to the anatomical SYNTAX score alone, the Core and Extended Models of the Logistic Clinical SYNTAX score more accurately predicted individual 1-year mortality in patients presenting with non-ST-segment elevation acute coronary syndromes undergoing percutaneous coronary intervention. These findings support the clinical application of the Logistic Clinical SYNTAX score.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Evaluation of health-related quality of life (HRQL) is important in improving the quality of patient care. The aim of this study was to determine the psychometric properties of the HeartQoL in patients with ischemic heart disease (IHD), specifically angina, myocardial infarction (MI), or ischemic heart failure. Methods: Data for the interim validation of the HeartQoL questionnaire were collected in (a) a cross-sectional survey and (b) a prospective substudy of patients undergoing either a percutaneous coronary intervention (PCI) or referred to cardiac rehabilitation (CR) and were then analyzed to determine the reliability, validity, and responsiveness of the HeartQoL questionnaire. Results: We enrolled 6384 patients (angina, n = 2111, 33.1%; MI, n = 2351, 36.8%; heart failure, n = 1922, 30.1%) across 22 countries speaking 15 languages in the cross-sectional study and 730 patients with IHD in the prospective substudy. The HeartQoL questionnaire comprises 14-items with physical and emotional subscales and a global score (range 0–3 (poor to better HRQL). Cronbach’s α was consistently ≥0.80; convergent validity correlations between similar HeartQoL and SF-36 subscales were significant (r ≥ 0.60, p < 0.001); discriminative validity was confirmed with predictor variables: health transition, anxiety, depression, and functional status. HeartQoL score changes following either PCI or CR were significant (p < 0.001) with effect sizes ranging from 0.37–0.64. Conclusion: The HeartQoL questionnaire is reliable, valid, and responsive to change allowing clinicians and researchers to (a) assess baseline HRQL, (b) make between-diagnosis comparisons of HRQL, and (c) evaluate change in HRQL in patients with angina, MI, or heart failure with a single IHD-specific HRQL instrument.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Many users search the Internet for answers to health questions. Complementary and alternative medicine (CAM) is a particularly common search topic. Because many CAM therapies do not require a clinician's prescription, false or misleading CAM information may be more dangerous than information about traditional therapies. Many quality criteria have been suggested to filter out potentially harmful online health information. However, assessing the accuracy of CAM information is uniquely challenging since CAM is generally not supported by conventional literature. OBJECTIVE: The purpose of this study is to determine whether domain-independent technical quality criteria can identify potentially harmful online CAM content. METHODS: We analyzed 150 Web sites retrieved from a search for the three most popular herbs: ginseng, ginkgo and St. John's wort and their purported uses on the ten most commonly used search engines. The presence of technical quality criteria as well as potentially harmful statements (commissions) and vital information that should have been mentioned (omissions) was recorded. RESULTS: Thirty-eight sites (25%) contained statements that could lead to direct physical harm if acted upon. One hundred forty five sites (97%) had omitted information. We found no relationship between technical quality criteria and potentially harmful information. CONCLUSIONS: Current technical quality criteria do not identify potentially harmful CAM information online. Consumers should be warned to use other means of validation or to trust only known sites. Quality criteria that consider the uniqueness of CAM must be developed and validated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We validate, extend, and empirically and theoretically criticize the cultural dimension of humane orientation of the project GLOBE (Global Leadership and Organizational Behavior Effectiveness Research Program). Theoretically, humane orientation is not just a one-dimensionally positive concept about being caring, altruistic, and kind to others as discussed by Kabasakal and Bodur (2004), but there is also a certain ambivalence to this concept. We suggest differentiating humane orientation toward in-group members from humane orientation toward out-group members. A multicountry construct validation study used student samples from 25 countries that were either high or low in humane orientation (N = 876) and studied their relation to the traditional GLOBE scale and other cultural-level measures (agreeableness, religiosity, authoritarianism, and welfare state score). Findings revealed a strong correlation between humane orientation and agreeableness, welfare state score, and religiosity. Out-group humane orientation proved to be the more relevant subfacet of the original humane orientation construct, suggesting that future research on humane orientation should make use of this measure instead of the vague original scale. The ambivalent character of out-group humane orientation is displayed in its positive correlation to high authoritarianism. Patriotism was used as a control variable for noncritical acceptance of one’s society but did not change the correlations. Our findings are discussed as an example of how rigid expectations and a lack of tolerance for diversity may help explain the ambivalent nature of humane orientation

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE Intraarticular gadolinium-enhanced magnetic resonance arthrography (MRA) is commonly applied to characterize morphological disorders of the hip. However, the reproducibility of retrieving anatomic landmarks on MRA scans and their correlation with intraarticular pathologies is unknown. A precise mapping system for the exact localization of hip pathomorphologies with radial MRA sequences is lacking. Therefore, the purpose of the study was the establishment and validation of a reproducible mapping system for radial sequences of hip MRA. MATERIALS AND METHODS Sixty-nine consecutive intraarticular gadolinium-enhanced hip MRAs were evaluated. Radial sequencing consisted of 14 cuts orientated along the axis of the femoral neck. Three orthopedic surgeons read the radial sequences independently. Each MRI was read twice with a minimum interval of 7 days from the first reading. The intra- and inter-observer reliability of the mapping procedure was determined. RESULTS A clockwise system for hip MRA was established. The teardrop figure served to determine the 6 o'clock position of the acetabulum; the center of the greater trochanter served to determine the 12 o'clock position of the femoral head-neck junction. The intra- and inter-observer ICCs to retrieve the correct 6/12 o'clock positions were 0.906-0.996 and 0.978-0.988, respectively. CONCLUSIONS The established mapping system for radial sequences of hip joint MRA is reproducible and easy to perform.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Symptoms has been shown to predict quality of life, treatment course and survival in solid tumor patients. Currently, no instrument exists that measures both cancer-related symptoms and the neurologic symptoms that are unique to persons with primary brain tumors (PBT). The aim of this study was to develop and validate an instrument to measure symptoms in patients who have PBT. A conceptual analysis of symptoms and symptom theories led to defining the symptoms experience as the perception of the frequency, intensity, distress, and meaning that occurs as symptoms are produced, perceived, and expressed. The M.D. Anderson Symptom Inventory (MDASI) measures both symptoms and how they interfere with daily functioning in patients with cancer, which is similar to the situational meaning defined in the analysis. A list of symptoms pertinent to the PBT population was added to the core MDASI and reviewed by a group of experts for validity. As a result, 18 items were added to the core MDASI (the MDASI-BT) for the next phase of instrument development, establishing validity and reliability through a descriptive, cross-sectional approach with PBT patients. Data were collected with a patient completed demographic data sheet, an investigator completed clinician checklist, and the MDASI-BT. Analysis evaluated the reliability and validity of the MDASI-BT in PBT patients. Data were obtained from 201 patients. The number of items was reduced to 22 by evaluation of symptom severity as well as cluster analysis. Regression analysis showed more than half (56%) of the variability in symptom severity was explained by the brain tumor module items. Factor analysis confirmed that the 22 item MDASI-BT measured six underlying constructs: (a) affective; (b) cognitive; (c) focal neurologic deficits; (d) constitutional symptoms; (e) treatment-related symptoms; and (f) gastrointestinal symptoms. The MDASI-BT was sensitive to disease severity and if the patient was hospitalized. The MDASI-BT is the first instrument to measure symptoms in PBT patients that has demonstrated reliability and validity. It is the first step in a program of research to evaluate the occurrence of symptoms and plan and evaluate interventions for PBT patients. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background/significance. The scarcity of reliable and valid Spanish language instruments for health related research has hindered research with the Hispanic population. Research suggests that fatalistic attitudes are related to poor cancer screening behaviors and may be one reason for low participation of Mexican-Americans in cancer screening. This problem is of major concern because Mexican-Americans constitute the largest Hispanic subgroup in the U.S.^ Purpose. The purposes of this study were: (1) To translate the Powe Fatalism Inventory, (PFI) into Spanish, and culturally adapt the instrument to the Mexican-American culture as found along the U.S.-Mexico border and (2) To test the equivalence between the Spanish translated, culturally adapted version of the PFI and the English version of the PFI to include clarity, content validity, reading level and reliability.^ Design. Descriptive, cross-sectional.^ Methods. The Spanish language translation used a translation model which incorporates a cultural adaptation process. The SPFI was administered to 175 bilingual participants residing in a midsize, U.S-Mexico border city. Data analysis included estimation of Cronbach's alpha, factor analysis, paired samples t-test comparison and multiple regression analysis using SPSS software, as well as measurement of content validity and reading level of the SPFI. ^ Findings. A reliability estimate using Cronbach's alpha coefficient was 0.81 for the SPFI compared to 0.80 for the PFI in this study. Factor Analysis extracted four factors which explained 59% of the variance. Paired t-test comparison revealed no statistically significant differences between the SPFI and PFI total or individual item scores. Content Validity Index was determined to be 1.0. Reading Level was assessed to be less than a 6th grade reading level. The correlation coefficient between the SPFI and PFI was 0.95.^ Conclusions. This study provided strong psychometric evidence that the Spanish translated, culturally adapted SPFI is an equivalent tool to the English version of the PFI in measuring cancer fatalism. This indicates that the two forms of the instrument can be used interchangeably in a single study to accommodate reading and speaking abilities of respondents. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Esta tesis está incluida dentro del campo del campo de Multiband Orthogonal Frequency Division Multiplexing Ultra Wideband (MB-OFDM UWB), el cual ha adquirido una gran importancia en las comunicaciones inalámbricas de alta tasa de datos en la última década. UWB surgió con el objetivo de satisfacer la creciente demanda de conexiones inalámbricas en interiores y de uso doméstico, con bajo coste y alta velocidad. La disponibilidad de un ancho de banda grande, el potencial para alta velocidad de transmisión, baja complejidad y bajo consumo de energía, unido al bajo coste de implementación, representa una oportunidad única para que UWB se convierta en una solución ampliamente utilizada en aplicaciones de Wireless Personal Area Network (WPAN). UWB está definido como cualquier transmisión que ocupa un ancho de banda de más de 20% de su frecuencia central, o más de 500 MHz. En 2002, la Comisión Federal de Comunicaciones (FCC) definió que el rango de frecuencias de transmisión de UWB legal es de 3.1 a 10.6 GHz, con una energía de transmisión de -41.3 dBm/Hz. Bajo las directrices de FCC, el uso de la tecnología UWB puede aportar una enorme capacidad en las comunicaciones de corto alcance. Considerando las ecuaciones de capacidad de Shannon, incrementar la capacidad del canal requiere un incremento lineal en el ancho de banda, mientras que un aumento similar de la capacidad de canal requiere un aumento exponencial en la energía de transmisión. En los últimos años, s diferentes desarrollos del UWB han sido extensamente estudiados en diferentes áreas, entre los cuales, el protocolo de comunicaciones inalámbricas MB-OFDM UWB está considerado como la mejor elección y ha sido adoptado como estándar ISO/IEC para los WPANs. Combinando la modulación OFDM y la transmisión de datos utilizando las técnicas de salto de frecuencia, el sistema MB-OFDM UWB es capaz de soportar tasas de datos con que pueden variar de los 55 a los 480 Mbps, alcanzando una distancia máxima de hasta 10 metros. Se esperara que la tecnología MB-OFDM tenga un consumo energético muy bajo copando un are muy reducida en silicio, proporcionando soluciones de bajo coste que satisfagan las demandas del mercado. Para cumplir con todas estas expectativas, el desarrollo y la investigación del MBOFDM UWB deben enfrentarse a varios retos, como son la sincronización de alta sensibilidad, las restricciones de baja complejidad, las estrictas limitaciones energéticas, la escalabilidad y la flexibilidad. Tales retos requieren un procesamiento digital de la señal de última generación, capaz de desarrollar sistemas que puedan aprovechar por completo las ventajas del espectro UWB y proporcionar futuras aplicaciones inalámbricas en interiores. Esta tesis se centra en la completa optimización de un sistema de transceptor de banda base MB-OFDM UWB digital, cuyo objetivo es investigar y diseñar un subsistema de comunicación inalámbrica para la aplicación de las Redes de Sensores Inalámbricas Visuales. La complejidad inherente de los procesadores FFT/IFFT y el sistema de sincronización así como la alta frecuencia de operación para todos los elementos de procesamiento, se convierten en el cuello de la botella para el diseño y la implementación del sistema de UWB digital en base de banda basado en MB-OFDM de baja energía. El objetivo del transceptor propuesto es conseguir baja energía y baja complejidad bajo la premisa de un alto rendimiento. Las optimizaciones están realizadas tanto a nivel algorítmico como a nivel arquitectural para todos los elementos del sistema. Una arquitectura hardware eficiente en consumo se propone en primer lugar para aquellos módulos correspondientes a núcleos de computación. Para el procesado de la Transformada Rápida de Fourier (FFT/IFFT), se propone un algoritmo mixed-radix, basado en una arquitectura con pipeline y se ha desarrollado un módulo de Decodificador de Viterbi (VD) equilibrado en coste-velocidad con el objetivo de reducir el consumo energético e incrementar la velocidad de procesamiento. También se ha implementado un correlador signo-bit simple basado en la sincronización del tiempo de símbolo es presentado. Este correlador es usado para detectar y sincronizar los paquetes de OFDM de forma robusta y precisa. Para el desarrollo de los subsitemas de procesamiento y realizar la integración del sistema completo se han empleado tecnologías de última generación. El dispositivo utilizado para el sistema propuesto es una FPGA Virtex 5 XC5VLX110T del fabricante Xilinx. La validación el propuesta para el sistema transceptor se ha implementado en dicha placa de FPGA. En este trabajo se presenta un algoritmo, y una arquitectura, diseñado con filosofía de co-diseño hardware/software para el desarrollo de sistemas de FPGA complejos. El objetivo principal de la estrategia propuesta es de encontrar una metodología eficiente para el diseño de un sistema de FPGA configurable optimizado con el empleo del mínimo esfuerzo posible en el sistema de procedimiento de verificación, por tanto acelerar el periodo de desarrollo del sistema. La metodología de co-diseño presentada tiene la ventaja de ser fácil de usar, contiene todos los pasos desde la propuesta del algoritmo hasta la verificación del hardware, y puede ser ampliamente extendida para casi todos los tipos de desarrollos de FPGAs. En este trabajo se ha desarrollado sólo el sistema de transceptor digital de banda base por lo que la comprobación de señales transmitidas a través del canal inalámbrico en los entornos reales de comunicación sigue requiriendo componentes RF y un front-end analógico. No obstante, utilizando la metodología de co-simulación hardware/software citada anteriormente, es posible comunicar el sistema de transmisor y el receptor digital utilizando los modelos de canales propuestos por IEEE 802.15.3a, implementados en MATLAB. Por tanto, simplemente ajustando las características de cada modelo de canal, por ejemplo, un incremento del retraso y de la frecuencia central, podemos estimar el comportamiento del sistema propuesto en diferentes escenarios y entornos. Las mayores contribuciones de esta tesis son: • Se ha propuesto un nuevo algoritmo 128-puntos base mixto FFT usando la arquitectura pipeline multi-ruta. Los complejos multiplicadores para cada etapa de procesamiento son diseñados usando la arquitectura modificada shiftadd. Los sistemas word length y twiddle word length son comparados y seleccionados basándose en la señal para cuantización del SQNR y el análisis de energías. • El desempeño del procesador IFFT es analizado bajo diferentes situaciones aritméticas de bloques de punto flotante (BFP) para el control de desbordamiento, por tanto, para encontrar la arquitectura perfecta del algoritmo IFFT basado en el procesador FFT propuesto. • Para el sistema de receptor MB-OFDM UWB se ha empleado una sincronización del tiempo innovadora, de baja complejidad y esquema de compensación, que consiste en funciones de Detector de Paquetes (PD) y Estimación del Offset del tiempo. Simplificando el cross-correlation y maximizar las funciones probables solo a sign-bit, la complejidad computacional se ve reducida significativamente. • Se ha propuesto un sistema de decodificadores Viterbi de 64 estados de decisión-débil usando velocidad base-4 de arquitectura suma-comparaselecciona. El algoritmo Two-pointer Even también es introducido en la unidad de rastreador de origen con el objetivo de conseguir la eficiencia en el hardware. • Se han integrado varias tecnologías de última generación en el completo sistema transceptor basebanda , con el objetivo de implementar un sistema de comunicación UWB altamente optimizado. • Un diseño de flujo mejorado es propuesto para el complejo sistema de implementación, el cual puede ser usado para diseños de Cadena de puertas de campo programable general (FPGA). El diseño mencionado no sólo reduce dramáticamente el tiempo para la verificación funcional, sino también provee un análisis automático como los errores del retraso del output para el sistema de hardware implementado. • Un ambiente de comunicación virtual es establecido para la validación del propuesto sistema de transceptores MB-OFDM. Este método es provisto para facilitar el uso y la conveniencia de analizar el sistema digital de basebanda sin parte frontera analógica bajo diferentes ambientes de comunicación. Esta tesis doctoral está organizada en seis capítulos. En el primer capítulo se encuentra una breve introducción al campo del UWB, tanto relacionado con el proyecto como la motivación del desarrollo del sistema de MB-OFDM. En el capítulo 2, se presenta la información general y los requisitos del protocolo de comunicación inalámbrica MBOFDM UWB. En el capítulo 3 se habla de la arquitectura del sistema de transceptor digital MB-OFDM de banda base . El diseño del algoritmo propuesto y la arquitectura para cada elemento del procesamiento está detallado en este capítulo. Los retos de diseño del sistema que involucra un compromiso de discusión entre la complejidad de diseño, el consumo de energía, el coste de hardware, el desempeño del sistema, y otros aspectos. En el capítulo 4, se ha descrito la co-diseñada metodología de hardware/software. Cada parte del flujo del diseño será detallado con algunos ejemplos que se ha hecho durante el desarrollo del sistema. Aprovechando esta estrategia de diseño, el procedimiento de comunicación virtual es llevado a cabo para probar y analizar la arquitectura del transceptor propuesto. Los resultados experimentales de la co-simulación y el informe sintético de la implementación del sistema FPGA son reflejados en el capítulo 5. Finalmente, en el capítulo 6 se incluye las conclusiones y los futuros proyectos, y también los resultados derivados de este proyecto de doctorado. ABSTRACT In recent years, the Wireless Visual Sensor Network (WVSN) has drawn great interest in wireless communication research area. They enable a wealth of new applications such as building security control, image sensing, and target localization. However, nowadays wireless communication protocols (ZigBee, Wi-Fi, and Bluetooth for example) cannot fully satisfy the demands of high data rate, low power consumption, short range, and high robustness requirements. New communication protocol is highly desired for such kind of applications. The Ultra Wideband (UWB) wireless communication protocol, which has increased in importance for high data rate wireless communication field, are emerging as an important topic for WVSN research. UWB has emerged as a technology that offers great promise to satisfy the growing demand for low-cost, high-speed digital wireless indoor and home networks. The large bandwidth available, the potential for high data rate transmission, and the potential for low complexity and low power consumption, along with low implementation cost, all present a unique opportunity for UWB to become a widely adopted radio solution for future Wireless Personal Area Network (WPAN) applications. UWB is defined as any transmission that occupies a bandwidth of more than 20% of its center frequency, or more than 500 MHz. In 2002, the Federal Communications Commission (FCC) has mandated that UWB radio transmission can legally operate in the range from 3.1 to 10.6 GHz at a transmitter power of -41.3 dBm/Hz. Under the FCC guidelines, the use of UWB technology can provide enormous capacity over short communication ranges. Considering Shannon’s capacity equations, increasing the channel capacity requires linear increasing in bandwidth, whereas similar channel capacity increases would require exponential increases in transmission power. In recent years, several different UWB developments has been widely studied in different area, among which, the MB-OFDM UWB wireless communication protocol is considered to be the leading choice and has recently been adopted in the ISO/IEC standard for WPANs. By combing the OFDM modulation and data transmission using frequency hopping techniques, the MB-OFDM UWB system is able to support various data rates, ranging from 55 to 480 Mbps, over distances up to 10 meters. The MB-OFDM technology is expected to consume very little power and silicon area, as well as provide low-cost solutions that can satisfy consumer market demands. To fulfill these expectations, MB-OFDM UWB research and development have to cope with several challenges, which consist of high-sensitivity synchronization, low- complexity constraints, strict power limitations, scalability, and flexibility. Such challenges require state-of-the-art digital signal processing expertise to develop systems that could fully take advantages of the UWB spectrum and support future indoor wireless applications. This thesis focuses on fully optimization for the MB-OFDM UWB digital baseband transceiver system, aiming at researching and designing a wireless communication subsystem for the Wireless Visual Sensor Networks (WVSNs) application. The inherent high complexity of the FFT/IFFT processor and synchronization system, and high operation frequency for all processing elements, becomes the bottleneck for low power MB-OFDM based UWB digital baseband system hardware design and implementation. The proposed transceiver system targets low power and low complexity under the premise of high performance. Optimizations are made at both algorithm and architecture level for each element of the transceiver system. The low-power hardwareefficient structures are firstly proposed for those core computation modules, i.e., the mixed-radix algorithm based pipelined architecture is proposed for the Fast Fourier Transform (FFT/IFFT) processor, and the cost-speed balanced Viterbi Decoder (VD) module is developed, in the aim of lowering the power consumption and increasing the processing speed. In addition, a low complexity sign-bit correlation based symbol timing synchronization scheme is presented so as to detect and synchronize the OFDM packets robustly and accurately. Moreover, several state-of-the-art technologies are used for developing other processing subsystems and an entire MB-OFDM digital baseband transceiver system is integrated. The target device for the proposed transceiver system is Xilinx Virtex 5 XC5VLX110T FPGA board. In order to validate the proposed transceiver system in the FPGA board, a unified algorithm-architecture-circuit hardware/software co-design environment for complex FPGA system development is presented in this work. The main objective of the proposed strategy is to find an efficient methodology for designing a configurable optimized FPGA system by using as few efforts as possible in system verification procedure, so as to speed up the system development period. The presented co-design methodology has the advantages of easy to use, covering all steps from algorithm proposal to hardware verification, and widely spread for almost all kinds of FPGA developments. Because only the digital baseband transceiver system is developed in this thesis, the validation of transmitting signals through wireless channel in real communication environments still requires the analog front-end and RF components. However, by using the aforementioned hardware/software co-simulation methodology, the transmitter and receiver digital baseband systems get the opportunity to communicate with each other through the channel models, which are proposed from the IEEE 802.15.3a research group, established in MATLAB. Thus, by simply adjust the characteristics of each channel model, e.g. mean excess delay and center frequency, we can estimate the transmission performance of the proposed transceiver system through different communication situations. The main contributions of this thesis are: • A novel mixed radix 128-point FFT algorithm by using multipath pipelined architecture is proposed. The complex multipliers for each processing stage are designed by using modified shift-add architectures. The system wordlength and twiddle word-length are compared and selected based on Signal to Quantization Noise Ratio (SQNR) and power analysis. • IFFT processor performance is analyzed under different Block Floating Point (BFP) arithmetic situations for overflow control, so as to find out the perfect architecture of IFFT algorithm based on the proposed FFT processor. • An innovative low complex timing synchronization and compensation scheme, which consists of Packet Detector (PD) and Timing Offset Estimation (TOE) functions, for MB-OFDM UWB receiver system is employed. By simplifying the cross-correlation and maximum likelihood functions to signbit only, the computational complexity is significantly reduced. • A 64 state soft-decision Viterbi Decoder system by using high speed radix-4 Add-Compare-Select architecture is proposed. Two-pointer Even algorithm is also introduced into the Trace Back unit in the aim of hardware-efficiency. • Several state-of-the-art technologies are integrated into the complete baseband transceiver system, in the aim of implementing a highly-optimized UWB communication system. • An improved design flow is proposed for complex system implementation which can be used for general Field-Programmable Gate Array (FPGA) designs. The design method not only dramatically reduces the time for functional verification, but also provides automatic analysis such as errors and output delays for the implemented hardware systems. • A virtual communication environment is established for validating the proposed MB-OFDM transceiver system. This methodology is proved to be easy for usage and convenient for analyzing the digital baseband system without analog frontend under different communication environments. This PhD thesis is organized in six chapters. In the chapter 1 a brief introduction to the UWB field, as well as the related work, is done, along with the motivation of MBOFDM system development. In the chapter 2, the general information and requirement of MB-OFDM UWB wireless communication protocol is presented. In the chapter 3, the architecture of the MB-OFDM digital baseband transceiver system is presented. The design of the proposed algorithm and architecture for each processing element is detailed in this chapter. Design challenges of such system involve trade-off discussions among design complexity, power consumption, hardware cost, system performance, and some other aspects. All these factors are analyzed and discussed. In the chapter 4, the hardware/software co-design methodology is proposed. Each step of this design flow will be detailed by taking some examples that we met during system development. Then, taking advantages of this design strategy, the Virtual Communication procedure is carried out so as to test and analyze the proposed transceiver architecture. Experimental results from the co-simulation and synthesis report of the implemented FPGA system are given in the chapter 5. The chapter 6 includes conclusions and future work, as well as the results derived from this PhD work.