950 resultados para crofton weed (Eupatorium adenophorum)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Vachellia nilotica ssp. indica (hereafter, V. n. indica) is an important tree weed in Australia. Its dense populations induce undesirable changes in the vast areas of northern Australia. Because chemical and mechanical management options appear unviable for various reasons, biological management of this tree is considered a better option. Among the many trialled arthropods in Australian context, Anomalococcus indicus, a lecanodiaspid native to India, has been identified as a potent-candidate, since in India, its native terrain, it is the most widespread and occurs throughout the year. Severe infestations of A. indicus cause defoliation, wilting and death of branches, and occasionally the tree. Populations of A. indicus have been brought into Australia and are being tested for its host specificity under quarantine conditions. This article reports the physiological damage and stress it inflicts in the shoots of V. n. indica. Younger-nymphal instars of A. indicus feed on cortical-parenchyma cells of young stems, whereas the older instars and adults feed from the phloem of old stems. Two conspicuous responses of V. n. indica arising in response to the feeding action of A. indicus are changes in the cell-wall dynamics and irregular cell divisions. The feeding action of A. indicus elicits a sequence of reactions in the stem tissues of V. n. indica such as differentiation of thick-walled elements in the outer cortical parenchyma, differential thickening of cells with supernumerary layers of either suberin or lignin, proliferations of parenchyma and phloem, wall thickening and obliteration of inner lumen of phloem cells, and the sieve plates plugged with callosic deposits. The responses are the culminations of interaction between the virulence factor (one or more of the salivary proteins?) from A. indicus and the resistance factor in V. n. indica. We have analysed structural changes in the context of their functions, by comparing the feeding action of A. indicus with that of other hemipteroids. From the level of stress it induces, this study confirms that A. indicus has the potential to be an effective biological management of V. n. indica in Australia. © 2014 © 2014 Taylor & Francis and Aboricultural Association.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cascabela thevetia (L.) Lippold (Apocynaceae) is an invasive woody weed that has formed large infestations at several locations in northern Australia. Understanding the reproductive biology of C. thevetia is vital to its management. This paper reports results of a shade house experiment that determined the effects of light conditions (100% or 30% of natural light) and plant densities (one, two, four or eight plants per plot) on the growth, time to flowering and seed formation, and monthly pod production of two C. thevetia biotypes (peach and yellow). Shaded plants were significantly larger when they reached reproductive maturity than plants grown under natural light. However, plants grown under natural light flowered earlier (268 days compared with 369 days) and produced 488 more pods per pot (a 5-fold increase) over 3 years. The yellow biotype was slightly taller at reproductive maturity but significantly taller and with significantly greater aboveground biomass at the end of the study. Both biotypes flowered at a similar time under natural light and low plant densities but the yellow biotype was quicker to seed (478 versus 498 days), produced significantly more pods (364 versus 203 pods) and more shoot growth (577 g versus 550 g) than the peach biotype over 3 years. Higher densities of C. thevetia tended to significantly reduce the shoot and root growth by 981 g and 714 g per plant across all light conditions and biotypes over 3 years and increase the time taken to flower by 140 days and produce seeds by 184 days. For land managers trying to prevent establishment of C. thevetia or to control seedling regrowth once initial infestations have been treated, this study indicates that young plants have the potential to flower and produce seeds within 268 and 353 days, respectively. However, with plant growth and reproduction most likely to be slower under field conditions, annual surveillance and control activities should be sufficient to find and treat plants before they produce seeds and replenish soil seed banks. The most at-risk part of the landscape may be open areas that receive maximum sunlight, particularly within riparian habitats where plants would consistently have more favourable soil moisture conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The adoption of dry direct seeding of rice in many Asian countries has resulted in increased interest among weed scientists to improve weed management strategies, because of the large and complex weed flora associated with dry-seeded rice (DSR). Tillage and cover cropping practices can be integrated into weed management strategies as these have been known to affect weed emergence for several ecological reasons. A study was conducted in the summer seasons of 2012 and 2013 at the Punjab Agricultural University, Ludhiana, India, to evaluate the effects of tillage, cover cropping, and herbicides on weed growth and grain yield of DSR. Most of the weed species (Echinochloa crus-galli, Echinochloa colona, Eleusine indica, and Euphorbia hirta) under study tended to populate the cover crop (CC) treatment more than the no-cover crop (no-CC) treatment. Zero tillage (ZT) resulted in higher weed densities of most of the weed species studied. The interaction effects of these treatments suggest that lesser herbicide efficacy in ZT and CC plots led to higher weed pressure and weed biomass. Grain yield was significantly higher in the conventional tillage system (2.40–3.32 t ha−1), because of lesser weed pressure, than in ZT (2.08–2.73 t ha−1). Almost all weed species increased in number and biomass production in the second year (2013) compared with the preceding year. Herbicide application (pendimethalin followed by bispyribac-sodium) alone, though significantly increased DSR grain yield over that of the unsprayed check, resulted in lesser grain yield compared with the weed-free check (5.07–5.12 t ha−1) by 14% and 27% in 2012 and 2013, respectively. This was mainly due to the buildup of biomass by weeds that escaped from herbicide application. The study reveals that conservation practices such as ZT can form an important component of integrated weed management in DSR, provided that herbicide efficacy be improved by adjusting rate and time of herbicide application in such systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Parthenium weed (Parthenium hysterophorus L.) is believed to reduce the above- and below-ground plant species diversity and the above-ground productivity in several ecosystems. We quantified the impact of this invasive weed upon species diversity in an Australian grassland and assessed the resulting shifts in plant community composition following management using two traditional approaches. A baseline plant community survey, prior to management, showed that the above-ground community was dominated by P. hysterophorus, stoloniferous grasses, with a further high frequency of species from Malvaceae, Chenopodiaceae and Amaranthaceae. In heavily invaded areas, P. hysterophorus abundance and biomass was found to negatively correlate with species diversity and native species abundance. Digitaria didactyla Willd. was present in high abundance when P. hysterophorus was not, with these two species, contributing most to the dissimilarity seen between areas. The application of selective broad leaf weed herbicides significantly reduced P. hysterophorus biomass under ungrazed conditions, but this management did not yet result in an increase in species diversity. In the above-ground community, P. hysterophorus was partly replaced by the introduced grass species Cynodon dactylon L. (Pers.) 1 year after management began, increasing the above-ground forage biomass production, while D. didactyla replaced P. hysterophorus in the below-ground community. This improvement in forage availability continued to strengthen over the time of the study resulting in a total increase of 80% after 2 years in the ungrazed treatment, demonstrating the stress that grazing was imposing upon this grassland-based agro-ecosystem and showing that it is necessary to remove grazing to obtain the best results from the chemical management approach.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Australia has a very proud record of achievement in biological control of weeds and the underpinning science. From the earliest campaigns against prickly pear and lantana, weed biocontrol developed with major contributions from CSIRO and state governments to produce outstanding successes against weeds such as salvinia, rubber vine, Noogoora burr, bridal creeper and prickly pear. Maximum research activity occurred in the 1980s when some 30 scientists were working world wide on Australia’s weed problems. Activity declined gradually until the last few years when government divestment in agricultural research greatly diminished capacity. There are now approximately eight full-time scientist equivalents supporting Australia’s weed biocontrol effort. Australia may now need to adopt a team approach to tackle future major weed biological control projects.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Prickly acacia, Vachellia nilotica subsp. indica (syn. Acacia nilotica subsp. indica) (Fabaceae), a major weed in the natural grasslands of western Queensland, has been a target of biological control since the 1980s with limited success to date. Surveys in India, based on genetic and climate matching, identified five insects and two rust pathogens as potential agents. Host-specificity tests were conducted for the insects in India and under quarantine conditions in Australia, and for the rust pathogens under quarantine conditions at CABI in the UK. In no-choice tests, the brown leaf-webber, Phycita sp. A, (Lepidoptera: Pyralidae) completed development on 17 non-target plant species. Though the moth showed a clear preference for prickly acacia in oviposition choice trials screening of additional test-plant species was terminated in view of the potential non-target risk. The scale insect Anomalococcus indicus (Hemiptera: Lecanodiaspididae) developed into mature gravid females on 13 out of 58 non-target plant species tested. In the majority of cases very few female scales matured but development was comparable to that on prickly acacia on four of the non-target species. In multiple choice tests, the scale insect showed a significant preference for the target weed over non-target species tested. In a paired-choice trial under field conditions in India, crawler establishment occurred only on prickly acacia and not on the non-target species tested. Further choice trials are to be conducted under natural field conditions in India. A colony of the green leaf-webber Phycita sp. B has been established in quarantine facilities in Australia and host-specificity testing has commenced. The gall-rust Ravenelia acaciae-arabicae and the leaf-rust Ravenelia evansii (Puccineales: Raveneliaceae) both infected and produced viable urediniospores on Vachellia sutherlandii (Fabaceae), a non-target Australian native plant species. Hence, no further testing with the two rust species was pursued. Inoculation trials using the gall mite Aceria liopeltus (Acari: Eriophyidae) from V. nilotica subsp. kraussiana in South Africa resulted in no gall induction on V. nilotica subsp. indica. Future research will focus on the leaf-weevil Dereodus denticollis (Coleoptera: Curculionidae) and the leaf-beetle Pachnephorus sp. (Coleoptera: Chrysomelidae) under quarantine conditions in Australia. Native range surveys for additional potential biological control agents will also be pursued in northern and western Africa.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Weather is a general stochastic influence on the life history of weeds. In contrast, anthropogenic disturbance (e.g. land use) is an important deterministic influence on weed demography. Our aim with this study was to investigate the relative contributions of land use and weather on the demography of Lantana camara (lantana), a weed of agricultural and natural habitats, based on the intensive monitoring of lantana populations under three land uses (viz. farm[pasture], and burnt and grazed forests) in subtropical Australia. Lantana populations were growing vigorously across all land uses (asymptotic population growth rate, lambda > 3). Examination of historical demography using retrospective perturbation analyses showed that weather was a strong influence on lantana demography with the transition from an El Nino (2008-09) to a La Nina (2009-10) year having a strong positive effect on population growth rate. This effect was most marked at the grazed site, and to a lesser extent at the burnt site, with seedling-to-juvenile and juvenile-to-adult transitions contributing most to these effects. This is likely the result of burning and grazing having eliminated/reduced interspecific competition at these sites. Prospective perturbation analyses revealed that lambda was most sensitive to proportionate changes in growth transitions, followed by fecundity and survival transitions. Examination of context-specific patterns in elasticity revealed that growth and fecundity transitions are likely to be the more critical vital rates to reduce lambda in wet years at the burnt and grazed forest sites, compared to the farm/pasture site. Management of lantana may need to limit the transition of juveniles into the adult stages, especially in sites where lantana is free from competition (e.g. in the presence of fire or grazing), and this particularly needs to be achieved in wet years. Collectively, these results shed light on aspects of spatial and temporal variation in the demography of lantana, and offer insights on its context-specific management.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bellyache bush (Jatropha gossypiifolia, Euphorbiaceae), a deciduous shrub introduced as an ornamental from tropical America, is a major and expanding weed of rangelands and riparian zones in northern Australia. Biological control is the most economically viable and long-term management solution for this weed. Surveys for potential biological control agents for J gossypiifolia in Mexico,Central America and the Caribbean resulted in release of the seed-feeding jewel bug Agonosoma trilineatum (Hemiptera: Scutelleridae), which failed to establish, and prioritisation of a leaf-rust Phakopsora arthuriana (Puccineales: Phakopsoraceae) for host-specificity testing, which is ongoing. With poor prospects for new agents from Mexico and Central America and the Caribbean, the search for candidate agents on J gossypiifolia shifted to localities south of the equator. Surveys were conducted on the purple-leaf form of J gossypiifolia, Jatropha excisa, Jatropha clavuligera and Jatropha curcas in Peru, Bolivia and Paraguay in 2012 and 2013. A total of 11 insect species, one mite species and the leaf-rust (P. arthuriana) were observed. These include a yet to be described leafmining moth (Stomphastis sp.) (Lepidoptera: Gracillaridae), a shoot and leaf-galling midge Prodiplosis longifila, and leaf-feeding midge Prodiplosis sp. near longifila (both Diptera:Cecidomyiidae) and an unidentified leaf-feeding moth larva (Lepidoptera: Notodontidae). The leafminer is widespread and damaging and has a field host range restricted to the genus Jatropha in Peru and Bolivia, holds the greatest promise as a biological control agent in Australia. Phakopsora arthuriana was recorded for the first time ever from Bolivia and Peru. Further exploration will be conducted in Peru and Bolivia during the wet season to confirm the field host range of collected agents,and to look for more new agents. Promising agents with field host-range restricted to Jatropha spp. will be imported into a quarantine facility in Australia for host-specificity testing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Efficient ways to re-establish pastures are needed on land that requires a rotation between pastures and crops. We conducted trials in southern inland Queensland with a range of tropical perennial grasses sown into wheat stubble that was modified in various ways. Differing seedbed preparations involved cultivation or herbicide sprays, with or without fertilizer at sowing. Seed was broadcast and sowing time ranged from spring through to autumn on 3 different soil types. Seed quality and post-sowing rainfall were major determinants of the density of sown grass plants in the first year. Light cultivation sometimes enhanced establishment compared with herbicide spraying of standing stubble, most often on harder-setting soils. A nitrogen + phosphorus mixed fertilizer rarely produced any improvement in sown grass establishment and sometimes increased weed competition. The effects were similar for all types of grass seed from hairy fascicles to large, smooth panicoid seeds and minute Eragrostis seeds. There was a strong inverse relationship between the initial density of sown grass established and the level of weed competition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Invasive and noxious weeds are well known as a pervasive problem, imposing significant economic burdens on all areas of agriculture. Whilst there are multiple possible pathways of weed dispersal in this industry, of particular interest to this discussion is the unintended dispersal of weed seeds within fodder. During periods of drought or following natural disasters such as wild fire or flood, there arises the urgent need for 'relief' fodder to ensure survival and recovery of livestock. In emergency situations, relief fodder may be sourced from widely dispersed geographic regions, and some of these regions may be invaded by an extensive variety of weeds that are both exotic and detrimental to the intended destination for the fodder. Pasture hay is a common source of relief fodder and it typically consists of a mixture of grassy and broadleaf species that may include noxious weeds. When required urgently, pasture hay for relief fodder can be cut, baled, and transported over long distances in a short period of time, with little opportunity for prebaling inspection. It appears that, at the present time, there has been little effort towards rapid testing of bales, post-baling, for the presence of noxious weeds, as a measure to prevent dispersal of seeds. Published studies have relied on the analysis of relatively small numbers of bales, tested to destruction, in order to reveal seed species for identification and enumeration. The development of faster, more reliable, and non-destructive sampling methods is essential to increase the fodder industry's capacity to prevent the dispersal of noxious weeds to previously unaffected locales.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rice production symbolizes the single largest land use for food production on the Earth. The significance of this cereal as a source of energy and income seems overwhelming for millions of people in Asia, representing 90% of global rice production and consumption. Estimates indicate that the burgeoning population will need 25% more rice by 2025 than today's consumption. As the demand for rice is increasing, its production in Asia is threatened by a dwindling natural resource base, socioeconomic limitations, and uncertainty of climatic optima. Transplanting in puddled soil with continuous flooding is a common method of rice crop establishment in Asia. There is a dire need to look for rice production technologies that not only cope with existing limitations of transplanted rice but also are viable, economical, and secure for future food demand.Direct seeding of rice has evolved as a potential alternative to the current detrimental practice of puddling and nursery transplanting. The associated benefits include higher water productivity, less labor and energy inputs, less methane emissions, elimination of time and edaphic conflicts in the rice-wheat cropping system, and early crop maturity. Realization of the yield potential and sustainability of this resource-conserving rice production technique lies primarily in sustainable weed management, since weeds have been recognized as the single largest biological constraint in direct-seeded rice (DSR). Weed competition can reduce DSR yield by 30-80% and even complete crop failure can occur under specific conditions. Understanding the dynamics and outcomes of weed-crop competition in DSR requires sound knowledge of weed ecology, besides production factors that influence both rice and weeds, as well as their association. Successful adoption of direct seeding at the farmers' level in Asia will largely depend on whether farmers can control weeds and prevent shifts in weed populations from intractable weeds to more difficult-to-control weeds as a consequence of direct seeding. Sustainable weed management in DSR comprises all the factors that give DSR a competitive edge over weeds regarding acquisition and use of growth resources. This warrants the need to integrate various cultural practices with weed control measures in order to broaden the spectrum of activity against weed flora. A weed control program focusing entirely on herbicides is no longer ecologically sound, economically feasible, and effective against diverse weed flora and may result in the evolution of herbicide-resistant weed biotypes. Rotation of herbicides with contrasting modes of action in conjunction with cultural measures such as the use of weed-competitive rice cultivars, sowing time, stale seedbed technique, seeding rate, crop row spacing, fertilizer and water inputs and their application method/timing, and manual and mechanical hoeing can prove more effective and need to be optimized keeping in view the type and intensity of weed infestation. This chapter tries to unravel the dynamics of weed-crop competition in DSR. Technological issues, limitations associated with DSR, and opportunities to combat the weed menace are also discussed as a pragmatic approach for sustainable DSR production. A realistic approach to secure yield targets against weed competition will combine the abovementioned strategies and tactics in a coordinated manner. This chapter further suggests the need of multifaceted and interdisciplinary research into ecologically based weed management, as DSR seems inevitable in the near future.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dry-seeded rice (DSR) is an emerging resource-conserving technology in many Asian countries, but weeds remain the major threat to the production of DSR systems. A field study was conducted in 2012 and 2013 at the International Rice Research Institute (IRRI), Los Baños, Philippines, to evaluate the performance of sole and sequential applications of preemergence (oxadiazon and pendimethalin), early postemergence (butachlor + propanil and thiobencarb + 2,4-D), and late postemergence herbicides (bispyribac-sodium and fenoxaprop + ethoxysulfuron) with different modes of action in comparison to manual weeding in DSR. The sequential applications of all preemergence and postemergence herbicides reduced weed density and biomass by 80–100% compared to the nontreated plots. The sole application of postemergence herbicides reduced weed density by only 44–54% and weed biomass by 51–61%, whereas oxadiazon alone reduced weed density and biomass by 96–100%. All herbicide treatments and manual weeding significantly affected tiller number, biomass, crop growth rate, agronomic indices, yield-contributing parameters (panicle density and filled grains), and yield (biological and grain) of rice. The highest grain yield was obtained in the manually weeded plots (5.9–6.1 t ha−1) and the plots treated with oxadiazon alone (5.4–5.6 t ha−1) and oxadiazon followed by postemergence herbicides (5.2–5.8 t ha−1). The lowest paddy yield (0.22 t ha−1) was achieved in the nontreated plots followed by the plots treated with the sole application of bispyribac-sodium and fenoxaprop + ethoxysulfuron. The results suggest that oxadiazon is the best broad-spectrum and economically effective herbicide when applied alone or in combination with other effective postemergence herbicides with different modes of action, depending on the weed species present in the field.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A field study was established to evaluate oxadiargyl and pendimethalin during the wet seasons in Bangladesh in 2012 and 2013. The study evaluated the following treatments: oxadiargyl applied at 80, 120, and 160 g ai ha−1; pendimethalin at 800, 1200, and 1600 g ai ha−1; partial weedy; and weed-free. Rice plant density was greatly affected by weed control treatment. Lower density and lower uniformity of the rice plant stand occurred as a result of increased rates of herbicides. Increased rates of pendimethalin were more toxic than increased rates of oxadiargyl. Both herbicides effectively controlled Digitaria ciliaris, Echinochloa colona, and Phyllanthus niruri; however, they were unable to control Murdannia nudiflora. Oxadiargyl controlled Cyperus rotundus across rates by 31–55%, but pendimethalin was completely ineffective on it, and higher rates of both herbicides had no effect in controlling this weed. Both herbicides at higher rates reduced total weed biomass significantly. Among herbicide treatments, the highest yield (3.7–4.0 t ha−1) was recorded in plots treated with oxadiargyl at 160 g ai ha−1 and the lowest yield (2.4–2.8 t ha−1) was in plots treated with pendimethalin at 1600 g ai ha−1. Results from our study suggest that a higher rate of oxadiargyl can increase yield by suppressing weeds in dry-seeded rice systems. Similar to the results of oxadiargyl, pendimethalin at higher rates also greatly suppressed weeds; however, yield decreased due to phytotoxicity to rice seedlings.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Prickly acacia (Vachellia nilotica subsp. indica), a native of the Indian subcontinent, is a serious weed of the grazing areas of northern Australia and is a target for classical biological control. Native range surveys in India identified a leaf webber, Phycita sp. (Lepidoptera: Pyralidae) as a prospective biological control agent for prickly acacia. In this study, we report the life cycle and host-specificity test results Phycita sp. and highlight the contradictory results between the no-choice tests in India and Australia and the field host range in India. In no-choice tests in India and Australia, Phycita sp. completed development on two of 11 and 16 of 27 non-target test plant species, respectively. Although Phycita sp. fed and completed development on two non-target test plant species (Vachellia planifrons and V. leucophloea) in no-choice tests in India, there was no evidence of the insect on the two non-target test plant species in the field. Our contention is that oviposition behaviour could be the key mechanism in host selection of Phycita sp., resulting in its incidence only on prickly acacia in India. This is supported by paired oviposition choice tests involving three test plant species (Acacia baileyana, A. mearnsii and A. deanei) in quarantine in Australia, where eggs were laid only on prickly acacia. However, in paired oviposition choice trials, only few eggs were laid, making the results unreliable. Although oviposition choice tests suggest that prickly acacia is the most preferred and natural host, difficulties in conducting choice oviposition tests with fully grown trees under quarantine conditions in Australia and the logistic difficulties of conducting open-field tests with fully grown native Australian plants in India have led to rejection of Phycita sp. as a potential biological control agent for prickly acacia in Australia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Understanding the reproductive biology of Calotropis procera (Aiton) W.T. Aiton, an invasive weed of northern Australia, is critical for development of effective management strategies. Two experiments are reported on. In Experiment 1 seed longevity of C. procera seeds, exposed to different soil type (clay and river loam), pasture cover (present and absent) and burial depth (0, 2.5, 10 and 20 cm) treatments were examined. In Experiment 2 time to reach reproductive maturity was studied. The latter experiment included its sister species, C. gigantea (L.) W.T. Aiton, for comparison and two separate seed lots were tested in 2009 and 2012 to determine if exposure to different environmental conditions would influence persistence. Both seed lots demonstrated a rapid decline in viability over the first 3 months and declined to zero between 15 and 24 months after burial. In Experiment 1, longevity appeared to be most influenced by rainfall patterns and associated soil moisture, burial depth and soil type, but not the level of pasture cover. Experiment 2 showed that both C. procera and C. gigantea plants could flower once they had reached an average height of 85 cm. However, they differed significantly in terms of basal diameter at first flowering with C. gigantea significantly smaller (31 mm) than C. procera (45 mm). On average, C. gigantea flowered earlier (125 days vs 190 days) and set seed earlier (359 days vs 412 days) than C. procera. These results suggest that, under similar conditions to those that prevailed in the present studies, land managers could potentially achieve effective control of patches of C. procera in 2 years if they are able to kill all original plants and treat seedling regrowth frequently enough to prevent it reaching reproductive maturity. This suggested control strategy is based on the proviso that replenishment of the seed bank is not occurring from external sources (e.g. wind and water dispersal).