697 resultados para copy and paste
Resumo:
MBLdeficiency is thought to be a risk factor for the development of viral infection, such as genital herpes and HSV-2 meningitis. However, there is limited data on the possible interaction between MBL and CMV, especially after organ transplantation. Between 2003 and 2005, we measured MBL levels in 16 kidney transplant recipients with high-risk CMV serostatus (donor positive/recipient negative, D+/R−). All patients receivedCMV prophylaxis of valganciclovir 450 mg/day for 3 months after transplantation. After stopping valganciclovir, CMV-DNA was measured in whole blood by real time PCR every 2 weeks for 3 months. CMV infections were diagnosed according to the recommendations of the AST. MBL levels were measured in stored pre-transplantation sera by an investigator blinded to the CMV complications. MBL levels below 500 ng/ml were considered as being functionally deficient. After a follow-up of at least 10 months, seven patients out of 16 developed CMV disease (three CMV syndrome, and four probable invasive disease, i.e. two colitis and two hepatitis), four patients developed asymptomatic CMV infection, and five patients never developed any sign of CMV replication. Peak CMV-DNA was higher in patients with CMV disease than in those with asymptomatic infection (4.64 versus 2.72 mean log copy CMV-DNA/106 leukocytes, p < 0.05). Overall, 9/16 patients (56%) had MBL deficiency: 5/7 (71%) of patients with CMV disease, 4/4 (100%) of patients with asymptomatic CMVinfection, and 0/5 (0%) of patients withoutCMVinfection (p < 0.005, between CMV infection/disease versus no infection or control blood donors). There were no significant differences in age, gender or immunosuppressive regimens between the groups. MBL deficiency may be a significant risk factor for the development of post-prophylaxisCMVinfection in D+/R−kidney recipients, suggesting a new role of innate immunity in the control of CMV infection after organ transplantation.
Resumo:
Genome-wide association studies (GWAS) have identified many risk loci for complex diseases, but effect sizes are typically small and information on the underlying biological processes is often lacking. Associations with metabolic traits as functional intermediates can overcome these problems and potentially inform individualized therapy. Here we report a comprehensive analysis of genotype-dependent metabolic phenotypes using a GWAS with non-targeted metabolomics. We identified 37 genetic loci associated with blood metabolite concentrations, of which 25 show effect sizes that are unusually high for GWAS and account for 10-60% differences in metabolite levels per allele copy. Our associations provide new functional insights for many disease-related associations that have been reported in previous studies, including those for cardiovascular and kidney disorders, type 2 diabetes, cancer, gout, venous thromboembolism and Crohn's disease. The study advances our knowledge of the genetic basis of metabolic individuality in humans and generates many new hypotheses for biomedical and pharmaceutical research.
Resumo:
Background: MLPA method is a potentially useful semi-quantitative method to detect copy number alterations in targeted regions. In this paper, we propose a method for the normalization procedure based on a non-linear mixed-model, as well as a new approach for determining the statistical significance of altered probes based on linear mixed-model. This method establishes a threshold by using different tolerance intervals that accommodates the specific random error variability observed in each test sample.Results: Through simulation studies we have shown that our proposed method outperforms two existing methods that are based on simple threshold rules or iterative regression. We have illustrated the method using a controlled MLPA assay in which targeted regions are variable in copy number in individuals suffering from different disorders such as Prader-Willi, DiGeorge or Autism showing the best performace.Conclusion: Using the proposed mixed-model, we are able to determine thresholds to decide whether a region is altered. These threholds are specific for each individual, incorporating experimental variability, resulting in improved sensitivity and specificity as the examples with real data have revealed.
Resumo:
Meiosis in triploids faces the seemingly insuperable difficulty of dividing an odd number of chromosome sets by two. Triploid vertebrates usually circumvent this problem through either asexuality or some forms of hybridogenesis, including meiotic hybridogenesis that involve a reproductive community of different ploidy levels and genome composition. Batura toads (Bufo baturae; 3n = 33 chromosomes), however, present an all-triploid sexual reproduction. This hybrid species has two genome copies carrying a nucleolus-organizing region (NOR+) on chromosome 6, and a third copy without it (NOR-). Males only produce haploid NOR+ sperm, while ova are diploid, containing one NOR+ and one NOR- set. Here, we conduct sibship analyses with co-dominant microsatellite markers so as (i) to confirm the purely clonal and maternal transmission of the NOR- set, and (ii) to demonstrate Mendelian segregation and recombination of the NOR+ sets in both sexes. This new reproductive mode in vertebrates ('pre-equalizing hybrid meiosis') offers an ideal opportunity to study the evolution of non-recombining genomes. Elucidating the mechanisms that allow simultaneous transmission of two genomes, one of Mendelian, the other of clonal inheritance, might shed light on the general processes that regulate meiosis in vertebrates.
Resumo:
For years, specifications have focused on the water to cement ratio (w/cm) and strength of concrete, despite the majority of the volume of a concrete mixture consisting of aggregate. An aggregate distribution of roughly 60% coarse aggregate and 40% fine aggregate, regardless of gradation and availability of aggregates, has been used as the norm for a concrete pavement mixture. Efforts to reduce the costs and improve sustainability of concrete mixtures have pushed owners to pay closer attention to mixtures with a well-graded aggregate particle distribution. In general, workability has many different variables that are independent of gradation, such as paste volume and viscosity, aggregate’s shape, and texture. A better understanding of how the properties of aggregates affect the workability of concrete is needed. The effects of aggregate characteristics on concrete properties, such as ability to be vibrated, strength, and resistivity, were investigated using mixtures in which the paste content and the w/cm were held constant. The results showed the different aggregate proportions, the maximum nominal aggregate sizes, and combinations of different aggregates all had an impact on the performance in the strength, slump, and box test.
Resumo:
Concrete will suffer frost damage when saturated and subjected to freezing temperatures. Frost-durable concrete can be produced if a specialized surfactant, also known as an air-entraining admixture (AEA), is added during mixing to stabilize microscopic air voids. Small and well-dispersed air voids are critical to produce frost-resistant concrete. Work completed by Klieger in 1952 found the minimum volume of air required to consistently ensure frost durability in a concrete mixture subjected to rapid freezing and thawing cycles. He suggested that frost durability was provided if 18 percent air was created in the paste. This is the basis of current practice despite the tests being conducted on materials that are no longer available using tests that are different from those in use today. Based on the data presented, it was found that a minimum air content of 3.5 percent in the concrete and 11.0 percent in the paste should yield concrete durable in the ASTM C 666 with modern AEAs and low or no lignosulfonate water reducers (WRs). Limited data suggests that mixtures with a higher dosage of lignosulfonate will need about 1 percent more air in the concrete or 3 percent more air in the paste for the materials and procedures used. A spacing factor of 0.008 in. was still found to be necessary to provide frost durability for the mixtures investigated.
Resumo:
Any transportation infrastructure system is inherently concerned with durability and performance issues. The proportioning and uniformity control of concrete mixtures are critical factors that directly affect the longevity and performance of the portland cement concrete pavement systems. At present, the only means available to monitor mix proportions of any given batch are to track batch tickets created at the batch plant. However, this does not take into account potential errors in loading materials into storage silos, calibration errors, and addition of water after dispatch. Therefore, there is a need for a rapid, cost-effective, and reliable field test that estimates the proportions of as-delivered concrete mixtures. In addition, performance based specifications will be more easily implemented if there is a way to readily demonstrate whether any given batch is similar to the proportions already accepted based on laboratory performance testing. The goal of the present research project is to investigate the potential use of a portable x-ray fluorescence (XRF) technique to assess the proportions of concrete mixtures as they are delivered. Tests were conducted on the raw materials, paste and mortar samples using a portable XRF device. There is a reasonable correlation between the actual and calculated mix proportions of the paste samples, but data on mortar samples was less reliable.
Resumo:
This paper explores analytically the contemporary pottery-making community of Pereruela (north-west Spain) that produces cooking pots from a mixture of red clay and kaolin. Analyses by different techniques (XRF, NAA, XRD, SEM and petrography) showed an extremely high variability for cooking ware pottery produced in a single production centre, by the same technology and using local clays. The main source of chemical variation is related to the use of different red clays and the presence of non-normally distributed inclusions of monazite. These two factors induce a high chemical variability, not only in the output of a single production centre, but even in the paste of a single pot, to an extent to which chemical compositions from one"workshop", or even one"pot", could be classified as having different provenances. The implications for the chemical characterization and for provenance studies of archaeological ceramics are addressed.
Resumo:
The goal of this work is to develop a method to objectively compare the performance of a digital and a screen-film mammography system in terms of image quality. The method takes into account the dynamic range of the image detector, the detection of high and low contrast structures, the visualisation of the images and the observer response. A test object, designed to represent a compressed breast, was constructed from various tissue equivalent materials ranging from purely adipose to purely glandular composition. Different areas within the test object permitted the evaluation of low and high contrast detection, spatial resolution and image noise. All the images (digital and conventional) were captured using a CCD camera to include the visualisation process in the image quality assessment. A mathematical model observer (non-prewhitening matched filter), that calculates the detectability of high and low contrast structures using spatial resolution, noise and contrast, was used to compare the two technologies. Our results show that for a given patient dose, the detection of high and low contrast structures is significantly better for the digital system than for the conventional screen-film system studied. The method of using a test object with a large tissue composition range combined with a camera to compare conventional and digital imaging modalities can be applied to other radiological imaging techniques. In particular it could be used to optimise the process of radiographic reading of soft copy images.
Resumo:
A genome-wide screen for large structural variants showed that a copy number variant (CNV) in the region encoding killer cell immunoglobulin-like receptors (KIR) associates with HIV-1 control as measured by plasma viral load at set point in individuals of European ancestry. This CNV encompasses the KIR3DL1-KIR3DS1 locus, encoding receptors that interact with specific HLA-Bw4 molecules to regulate the activation of lymphocyte subsets including natural killer (NK) cells. We quantified the number of copies of KIR3DS1 and KIR3DL1 in a large HIV-1 positive cohort, and showed that an increase in KIR3DS1 count associates with a lower viral set point if its putative ligand is present (p = 0.00028), as does an increase in KIR3DL1 count in the presence of KIR3DS1 and appropriate ligands for both receptors (p = 0.0015). We further provide functional data that demonstrate that NK cells from individuals with multiple copies of KIR3DL1, in the presence of KIR3DS1 and the appropriate ligands, inhibit HIV-1 replication more robustly, and associated with a significant expansion in the frequency of KIR3DS1+, but not KIR3DL1+, NK cells in their peripheral blood. Our results suggest that the relative amounts of these activating and inhibitory KIR play a role in regulating the peripheral expansion of highly antiviral KIR3DS1+ NK cells, which may determine differences in HIV-1 control following infection.
Resumo:
Abstract : Gene duplication is an essential source of material for the origin of genetic novelties. The reverse transcription of source gene mRNA followed by the genomic insertion of the resulting cDNA - retroposition - has provided the human genome with at least ~3600 detectable retrocopies. We find that ~30% of these retrocopies are transcribed, generally in testes. Their transcription often relies on preexisting regulatory elements (or open chromatin) close to their insertion site, which is illustrated by mRNA molecules containing retrocopies fused to their neighboring genes. Retrocopies appear to have been profoundly shaped by selection. Consistently, human retrocopies with an intact open reading (ORF) are more often transcribed than retropseudogenes, which leads to a minimal estimate of 120 functional retrogenes present in our genome. We also performed an analysis of Ka/Ks for human retrocopies. This analysis demonstrates that several intact retrocopies evolved under purifying selection and yields an estimated formation rate of ~1 retrogene per million year in the primate lineage. Using DNA sequencing and evolutionary simulations, we have identified 7 such primate-specific retrogenes that emerged on the lineage leading to humans In therian genomes, we found an excess of retrogenes with X-linked parents. Expression analyses support the idea that this "out of X" movement was driven by natural selection to produce autosomal functional counterparts for X-linked genes, which are silenced during male meiosis. Phylogenetic dating of this "out of X" movement suggests that our sex chromosomes arose about 180 MYA ago and are thus much younger than previously thought. Finally, we have also analyzed young gene duplications (and deletions) that arose by non allelic-homologous recombination and are not fixed in species. Using wild-caught and laboratory animals, we detected thousands of DNA segments that are polymorphic in copy number in mice. These copy number variants were found to profoundly alter the transcriptome of several mouse tissues. Strikingly, their influence on gene expression is not limited to the gene they contain but seems to extend to genes located up to 1.5 million bases away.
Resumo:
The complete mitochondrial DNA (mtDNA) control region was amplified and directly sequenced in two species of shrew, Crocidura russula and Sorex araneus (Insectivora, Mammalia). The general organization is similar to that found in other mammals: a central conserved region surrounded by two more variable domains. However, we have found in shrews the simultaneous presence of arrays of tandem repeats in potential locations where repeats tend to occur separately in other mammalian species. These locations correspond to regions which are associated with a possible interruption of the replication processes, either at the end of the three-stranded D-loop structure or toward the end of the heavy-strand replication. In the left domain the repeated sequences (R1 repeats) are 78 bp long, whereas in the right domain the repeats are 12 bp long in C. russula and 14 bp long in S. araneus (R2 repeats). Variation in the copy number of these repeated sequences results in mtDNA control region length differences. Southern blot analysis indicates that level of heteroplasmy (more than one mtDNA form within an individual) differs between species. A comparative study of the R2 repeats in 12 additional species representing three shrew subfamilies provides useful indications for the understanding of the origin and the evolution of these homologous tandemly repeated sequences. An asymmetry in the distribution of variants within the arrays, as well as the constant occurrence of shorter repeated sequences flanking only one side of the R2 arrays, could be related to asymmetry in the replication of each strand of the mtDNA molecule. The pattern of sequence and length variation within and between species, together with the capability of the arrays to form stable secondary structures, suggests that the dominant mechanism involved in the evolution of these arrays in unidirectional replication slippage.
Resumo:
A significant question is: What role does newly-formed expansive mineral growth play in the premature deterioration of concrete? These minerals (ettringite and brucite) are formed in cement paste as a result of chemical reactions involving cement and coarse/fine aggregate. Petrographic observations and SEM/EDAX analysis were conducted in order to determine chemical and mineralogical changes in the aggregate and cement paste of samples taken from Iowa concrete highways that showed premature deterioration. Mechanisms involved in deterioration were investigated. A second objective was to investigate whether deicer solutions exacerbate the formation of expansive minerals and concrete deterioration. Magnesium in deicer solutions causes the most severe paste deterioration by forming non-cementitious magnesium silicate hydrate and brucite. Chloride in deicer solutions promotes decalcification of paste and alters ettringite to chloroaluminate. Calcium magnesium acetate (CMA) and magnesium acetate (Mg-acetate) produce the most deleterious effects on concrete, with calcium acetate (Ca-acetate) being much less severe.
Resumo:
The goals of the human genome project did not include sequencing of the heterochromatic regions. We describe here an initial sequence of 1.1 Mb of the short arm of human chromosome 21 (HSA21p), estimated to be 10% of 21p. This region contains extensive euchromatic-like sequence and includes on average one transcript every 100 kb. These transcripts show multiple inter- and intrachromosomal copies, and extensive copy number and sequence variability. The sequencing of the "heterochromatic" regions of the human genome is likely to reveal many additional functional elements and provide important evolutionary information.