951 resultados para cooking-generated aerosol
Resumo:
Following brain injury there is often a prolonged period of deteriorating psychological condition, despite neurological stability or improvement. This is presumably consequent to the remission of anosognosia and the realisation of permanently worsened status. This change is hypothesised to be directed partially by the socially mediated processes which play a role in generating self-awareness and which here direct the reconstruction of the self as a permanently injured person. However, before we can understand this process of redevelopment, we need an unbiassed technique to monitor self-awareness. Semi-structured interviews were conducted with 30 individuals with long-standing brain injuries to capture their spontaneous complaints and their level of insight into the implications of their difficulties. The focus was on what the participants said in their own words, and the extent to which self-knowledge of difficulties was spontaneously salient to the participants. Their responses were subjected to content analysis. Most participants were able to say that they had brain injuries and physical difficulties, many mentioned memory and attentional problems and a few made references to a variety of emotional disturbances. Content analysis of data from unbiassed interviews can reveal the extent to which people with brain injuries know about their difficulties. Social constructionist accounts of self-awareness and recovery are supported.
Resumo:
The collimating effect of self-generated magnetic fields on fast-electron transport in solid aluminium targets irradiated by ultra-intense, picosecond laser pulses is investigated in this study. As the target thickness is varied in the range of 25 mu m to 1.4 mm, the maximum energies of protons accelerated from the rear surface are measured to infer changes in the fast-electron density and therefore the divergence of the fast-electron beam transported through the target. Purely ballistic spreading of the fast-electrons would result in a much faster decrease in the maximum proton energy with increasing target thickness than that measured. This implies that some degree of 'global' magnetic pinching of the fast-electrons occurs, particularly for thick (>400 mu m) targets. Numerical simulations of electron transport are in good agreement with the experimental data and show that the pinching effect of the magnetic field in thin targets is significantly reduced due to disruption of the field growth by refluxing fast-electrons.
Resumo:
K alpha radiation generated by interaction of an ultrashort (1 ps) laser with thin (25 mu m) Ti foils at high intensity (2x10(16) W/cm(2)) is analyzed using data from a spherical Bragg crystal imager and a single hit charge-coupled device spectrometer together with Monte Carlo simulations of K alpha brightness. Laser to K alpha and electron conversion efficiencies have been determined. We have also measured an effective crystal reflectivity of 3.75 +/- 2%. Comparison of imager data with data from the relatively broadband single hit spectrometer has revealed a reduction in crystal collection efficiency for high K alpha yield. This is attributed to a shift in the K-shell spectrum due to Ti ionization. (c) 2005 American Institute of Physics.
Resumo:
High power lasers are a tool that can be used to determine important parameters in the context of Warm Dense Matter, i.e. at the convergence of low-temperature plasma physics and finite-temperature condensed matter physics. Recent results concerning planet inner core materials such as water and iron are presented. We determined the equation of state, temperature and index of refraction of water for pressures up to 7 Mbar. The release state of iron in a LiF window allowed us to investigate the melting temperature near the inner core boundary conditions. Finally, the first application of proton radiography to the study of shocked material is also discussed.
Resumo:
We introduced a targeted single base deletion at codon 307 of the rds-peripherin gene in mice, similar mutations being known to cause autosomal dominant retinitis pigmentosa (RP) in man. Histopathological and electroretinographic analysis indicate that the retinopathy in mice homozygous for the codon 307 mutation appears more rapid than that in the naturally occurring null mutant, the rds(-/-) mouse, suggesting that the rds-307 mutation displays a dominant negative phenotype in combination with that due to haplosufficiency. RP is the most prevalent cause of registered visual handicap in those of working age in developed countries, the 50 or so mutations so far identified within the RDS-peripherin gene accounting for up to 10% of dominant cases of the disease. Given the sequence homologies that exist between the murine rds-peripherin and the human RDS-peripherin gene, this disease model, the first to be generated for peripherin-based RP using gene targeting techniques, should in principle be of value in the work-up in mice of therapeutics capable of targeting transcripts derived from the human gene.
Resumo:
Carcinus manenas, Liocarcinus puber and Cancer pagurs are thought to be three likely crab predators of the gastropod Calliostoma Zizyphinum. In order to compare the strenghts of predators and their prey, the whole shell and aperture lip strengh of white and pink Calliostoma morphotypes and the maximum forces exerted by the chelipeds of three crab species were measured. Although white shells were thicker than pink shells, Calliostoma colour morphotyes did not differ significantly in either the force required to break the shell lip or the whole shell. Both Liocarcinus puber and Carcinus maenas have dimorphic chelipeds and their “crusher” chelipeds deliver almost double the forces generated by the‘cutter’chelipeds. In constrast, Cancer pagurus has monomorphic chelipeds both delivering similar forces. When compared with Calliostoma shell strenght, the forces generated by the‘crusher’chelipeds of most L. puber tested were, in general, sufficient to break the shell lip of Calliostoma shells, whereas forces generated by the‘cutter’chelipeds of only the larger individuals were sufficient to break the shell lip. In C. manenas, forces generated by both the‘cutter’and‘crusher’chelipeds often exceeded the minimum recorded force required to break the shell lip and the‘crusher’cheliped reached the minimum force required to break whole Calliostoma shells. Both chelipeds of all C. pagurus tested generated forces in excess of the minimum required to break the shell lip, and the proportion of individuals capable of generating the minimum force required to break the whole shell increased with the size of the size of the crab. Carcinus maenas and Cancer pagurus were capable of breaking both the shell lips and the whole shells of a wider range of shell sizes than L. puber.
Resumo:
Target normal measurements of proton energy spectra from ultrathin (50-200 nm) planar foil targets irradiated by 10(19) W cm(-2) 40 fs laser pulses exhibit broad maxima that are not present in the energy spectra from micron thickness targets (6 mu m). The proton flux in the peak is considerably greater than the proton flux observed in the same energy range in thicker targets. Numerical modelling of the experiment indicates that this spectral modification in thin targets is caused by magnetic fields that grow at the rear of the target during the laser-target interaction.
Resumo:
Fast electron energy spectra have been measured for a range of intensities between 10(18) and 10(21) W cm(-2) and for different target materials using electron spectrometers. Several experimental campaigns were conducted on petawatt laser facilities at the Rutherford Appleton Laboratory and Osaka University, where the pulse duration was varied from 0.5 to 5 ps relevant to upcoming fast ignition integral experiments. The incident angle was also changed from normal incidence to 40 degrees in p-polarized. The results confirm a reduction from the ponderomotive potential energy on fast electrons at the higher intensities under the wide range of different irradiation conditions.
Efficient extreme UV harmonics generated from picosecond laser pulse interactions with solid targets
Resumo:
The generation of high harmonics created during the interaction of a 2.5 ps, 1053 nm laser pulse with a solid target has been recorded for intensities up to 10(19) W cm(-2). Harmonic orders up to the 68th at 15.5 nm in first order have been observed with indications up to the 75th at 14.0 nm in second-order diffraction. No differences in harmonic emission between s and p polarization of the laser beam were observed. The power of the 38th high harmonic at 27.7 nm is estimated to be 24 MW.
Resumo:
We report measurements of ultrahigh magnetic fields produced during intense (similar to10(20) Wcm(-2) mum(2)) laser interaction experiments with solids. We show that polarization measurements of high-order vuv laser harmonics generated during the interaction (up to the 15th order) suggest the existence of magnetic field strengths of 0.7+/-0.1 GG in the overdense plasma. Measurements using higher order harmonics indicate that denser regions of the plasma can be probed. This technique may be useful for measurements of multi-GG level magnetic fields which are predicted to occur at even higher intensities.