951 resultados para contact time
Resumo:
Background and purpose: Several promising non-pharmacological interventions have been developed to reduce acute pain in preterm infants including skin-to-skin contact between a mother and her infant. However, variability in physiological outcomes of existing studies on skin-to-skin makes it difficult to determine treatment effects of this naturalistic approach for the preterm infant. The aim of this study was to test the efficacy of mother and infant skin-to-skin contact during heel prick in premature infants. Method: Fifty nine stable preterm infants (born at least 30 weeks gestational age) who were undergoing routine heel lance were randomly assigned to either 15 min of skin-to-skin contact before, during and following heel prick (n = 31, treatment group), or to regular care (n = 28, control group). Throughout the heel lance procedure, all infants were assessed for change in facial action (NFCS), behavioral state, crying, and heart rate. Results: Statistically significant differences were noted between the treatment and control groups during the puncture, heel squeeze and the post phases of heel prick. Infants who received skin-to-skin contact were more likely to show lower NFCS scores throughout the procedure. Both groups of infants cried and showed increased heart rate during puncture and heel squeeze although changes in these measures were less for the treated infants. Conclusions: Skin-to-skin contact promoted reduction in behavioral measures and less physiological increase during procedure. It is recommended that skin-to-skin contact be used as a non-pharmacologic intervention to relieve acute pain in stable premature infants born 30 weeks gestational age or older. (C) 2007 European Federation of Chapters of the International Association for the Study of Pain. Published by Elsevier Ltd. All rights reserved.
Resumo:
Two different fuzzy approaches to voltage control in electric power distribution systems are introduced in this paper. The real-time controller in each case would act on power transformers equipped with under-load tap changers. Learning systems are employed to turn the voltage-control relays into adaptive devices. The scope of this study has been limited to the power distribution substation, and the voltage measurements and control actions are carried out on the secondary bus. The capacity of fuzzy systems to handle approximate data, together with their unique ability to interpret qualitative information, make it possible to design voltage-control strategies that satisfy the requirements of the Brazilian regulatory bodies and the real concerns of the electric power distribution companies. Fuzzy control systems based on these two strategies have been implemented and the test results were highly satisfactory.
Resumo:
A technique for improving the performance of an OSNR monitor based on a polarisation nulling method with the downhill simplex algorithm is demonstrated. Establishing a compromise between accuracy and acquisition time, the monitor has been calibrated to 0.72 dB/390 ms and 0.98 dB/320 ms, over a range of nearly 21 dB. As far as is known, these are the best values achieved with such an OSNR monitoring method.
Resumo:
This paper deals with the H(infinity) recursive estimation problem for general rectangular time-variant descriptor systems in discrete time. Riccati-equation based recursions for filtered and predicted estimates are developed based on a data fitting approach and game theory. In this approach, the nature determines a state sequence seeking to maximize the estimation cost, whereas the estimator tries to find an estimate that brings the estimation cost to a minimum. A solution exists for a specified gamma-level if the resulting cost is positive. In order to present some computational alternatives to the H(infinity) filters developed, they are rewritten in information form along with the respective array algorithms. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
In this paper we use the Hermite-Biehler theorem to establish results on the design of proportional plus integral plus derivative (PID) controllers for a class of time delay systems. Using the property of interlacing at high frequencies of the class of systems considered and linear programming we obtain the set of all stabilizing PID controllers. As far as we know, previous results on the synthesis of PID controllers rely on the solution of transcendental equations. This paper also extends previous results on the synthesis of proportional controllers for a class of delay systems Of retarded type to a larger class of delay systems. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The goal of this paper is to study and propose a new technique for noise reduction used during the reconstruction of speech signals, particularly for biomedical applications. The proposed method is based on Kalman filtering in the time domain combined with spectral subtraction. Comparison with discrete Kalman filter in the frequency domain shows better performance of the proposed technique. The performance is evaluated by using the segmental signal-to-noise ratio and the Itakura-Saito`s distance. Results have shown that Kalman`s filter in time combined with spectral subtraction is more robust and efficient, improving the Itakura-Saito`s distance by up to four times. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The dynamic behavior of composite laminates is very complex because there are many concurrent phenomena during composite laminate failure under impact load. Fiber breakage, delaminations, matrix cracking, plastic deformations due to contact and large displacements are some effects which should be considered when a structure made from composite material is impacted by a foreign object. Thus, an investigation of the low velocity impact on laminated composite thin disks of epoxy resin reinforced by carbon fiber is presented. The influence of stacking sequence and energy impact was investigated using load-time histories, displacement-time histories and energy-time histories as well as images from NDE. Indentation tests results were compared to dynamic results, verifying the inertia effects when thin composite laminate was impacted by foreign object with low velocity. Finite element analysis (FEA) was developed, using Hill`s model and material models implemented by UMAT (User Material Subroutine) into software ABAQUS (TM), in order to simulate the failure mechanisms under indentation tests. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
This paper deals with the traditional permutation flow shop scheduling problem with the objective of minimizing mean flowtime, therefore reducing in-process inventory. A new heuristic method is proposed for the scheduling problem solution. The proposed heuristic is compared with the best one considered in the literature. Experimental results show that the new heuristic provides better solutions regarding both the solution quality and computational effort.
Resumo:
An accurate estimate of machining time is very important for predicting delivery time, manufacturing costs, and also to help production process planning. Most commercial CAM software systems estimate the machining time in milling operations simply by dividing the entire tool path length by the programmed feed rate. This time estimate differs drastically from the real process time because the feed rate is not always constant due to machine and computer numerical controlled (CNC) limitations. This study presents a practical mechanistic method for milling time estimation when machining free-form geometries. The method considers a variable called machine response time (MRT) which characterizes the real CNC machine`s capacity to move in high feed rates in free-form geometries. MRT is a global performance feature which can be obtained for any type of CNC machine configuration by carrying out a simple test. For validating the methodology, a workpiece was used to generate NC programs for five different types of CNC machines. A practical industrial case study was also carried out to validate the method. The results indicated that MRT, and consequently, the real machining time, depends on the CNC machine`s potential: furthermore, the greater MRT, the larger the difference between predicted milling time and real milling time. The proposed method achieved an error range from 0.3% to 12% of the real machining time, whereas the CAM estimation achieved from 211% to 1244% error. The MRT-based process is also suggested as an instrument for helping in machine tool benchmarking.
Resumo:
This work presents a non-linear boundary element formulation applied to analysis of contact problems. The boundary element method (BEM) is known as a robust and accurate numerical technique to handle this type of problem, because the contact among the solids occurs along their boundaries. The proposed non-linear formulation is based on the use of singular or hyper-singular integral equations by BEM, for multi-region contact. When the contact occurs between crack surfaces, the formulation adopted is the dual version of BEM, in which singular and hyper-singular integral equations are defined along the opposite sides of the contact boundaries. The structural non-linear behaviour on the contact is considered using Coulomb`s friction law. The non-linear formulation is based on the tangent operator in which one uses the derivate of the set of algebraic equations to construct the corrections for the non-linear process. This implicit formulation has shown accurate as the classical approach, however, it is faster to compute the solution. Examples of simple and multi-region contact problems are shown to illustrate the applicability of the proposed scheme. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
A study was performed regarding the effect of the relation between fill time, volume treated per cycle, and influent concentration at different applied organic loadings on the stability and efficiency of an anaerobic sequencing batch reactor containing immobilized biomass on polyurethane foam with recirculation of the liquid phase (AnSBBR) applied to the treatment of wastewater from a personal care industry. Total cycle length of the reactor was 8 h (480 min). Fill times were 10 min in the batch operation, 4 h in the fed-batch operation, and a 10-min batch followed by a 4-h fed batch in the mixed operation. Settling time was not necessary since the biomass was immobilized and decant time was 10 min. Volume of liquid medium in the reactor was 2.5 L, whereas volume treated per cycle ranged from 0.88 to 2.5 L in accordance with fill time. Influent concentration varied from 300 to 1,425 mg COD/L, resulting in an applied volumetric organic load of 0.9 and 1.5 g COD/L.d. Recirculation flow rate was 20 L/h, and the reactor was maintained at 30 A degrees C. Values of organic matter removal efficiency of filtered effluent samples were below 71% in the batch operations and above 74% in the operations of fed batch followed by batch. Feeding wastewater during part of the operational cycle was beneficial to the system, as it resulted in indirect control over the conversion of substrate into intermediates that would negatively interfere with the biochemical reactions regarding the degradation of organic matter. As a result, the average substrate consumption increased, leading to higher organic removal efficiencies in the fed-batch operations.
Resumo:
Many lab-scale studies have been carried out regarding the effect of feed strategy on the performance of anaerobic sequencing batch reactors (ASBR); however, more detailed pilot-scale studies should be performed to assess the real applicability of this type of operation. Therefore, the objective of this work was to assess the effect of feed strategy or fill time in a 1-m(3) mechanically stirred pilot-scale sequencing batch reactor, treating 0.65 m(3) sanitary wastewater in 8-h cycles at ambient temperature. Two reactor configurations were used: one containing granular biomass (denominated ASBR) and the other immobilized biomass on polyurethane foam as inert support (denominated anaerobic sequencing batch biofilm reactor (AnSBBR)). The reactors were operated under five distinct feed strategies, namely: typical batch and fed-batch for 25%, 50%, 75%, and 100% of the cycle length. Stirring frequency in the ASBR was 40 rpm with two flat-blade turbine impellers and 80 rpm in the AnSBBR with two helix impellers. The results showed that both the ASBR and AnSBBR when operated under typical batch, fed-batch for 50% and 75% of the cycle length, presented improved organic matter removal efficiencies, without significant differences in performance, thus showing important operational flexibility. In addition, the reactors presented operation stability under all conditions.
Resumo:
The removal of sulfate and organic matter was assessed in an ASBR, which treated wastewater containing 500 mg COD L(-1) (3 g COD L(-1) d(-1)) in 8 h-cycles at 30 degrees C. The wastewater was enriched with sulfate at [COD/SO(4)(2-]) ratios of 1.34, 0.67 and 0.34 (8.8,4.5 and 2.2 gSO(4)(2-) L(-1) d(-1)). For each COD/[SO(4)(2-)] ratio fill times used were: 10 min (batch), 3 and 6 h (fed-batch), achieving sulfate reduction of 30%, 72% and 72% (COD/[SO(4)(2-)] of 1.34); 25%, 58% and 55% (COD/[SO(4)(2-)] of 0.67) and 23%, 37% and 27% (COD/[SO(4)(2-)] of 0.34), respectively, and organic matter removal of 87%, 68% and 80% (COD/[SO(4)(2-)] of 1.34); 78%, 75% and 69% (COD/[SO(4)(2-)] of 0.67) and 85%, 84% and 83% (COD/[SO(4)(2-)] of 0.34), respectively. The results showed that fed-batch operation improved sulfate reduction, whereas organic matter removals were similar for batch and fed-batch operation. In addition, increase in sulfate loading in the fed-batch operation improved organic matter removal. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The aim of this work was to investigate the effect of different feeding times (2, 4, and 6 h) and organic loading rates (3, 6 and 12 gCOD l(-1) day(-1)) on the performance of an anaerobic sequencing batch reactor containing immobilized biomass, as well as to verify the minimum amount of alkalinity that can be added to the influent. The reactor, in which mixing was achieved by recirculation of the liquid phase, was maintained at 30 +/- 1A degrees C, possessed 2.5 l reactional volume and treated 1.5 l cheese whey in 8-h cycles. Results showed that the effect of feeding time on reactor performance was more pronounced at higher values of organic loading rates (OLR). During operation at an OLR of 3 gCOD l(-1) day(-1), change in feeding time did not affect efficiency of organic matter removal from the reactor. At an OLR of 6 gCOD l(-1) day(-1), reactor efficiency improved in relation to the lower loading rate and tended to drop at longer feeding times. At an OLR of 12 gCOD l(-1) day(-1) the reactor showed to depend more on feeding time; higher feeding times resulted in a decrease in reactor efficiency. Under all conditions shock loads of 24 gCOD l(-1) day(-1) caused an increase in acids concentration in the effluent. However, despite this increase, the reactor regained stability readily and alkalinity supplied to the influent showed to be sufficient to maintain pH close to neutral during operation. Regardless of applied OLR, operation with feeding time of 2 h was which provided improved stability and rendered the process less susceptible to shock loads.
Resumo:
This paper considers the optimal linear estimates recursion problem for discrete-time linear systems in its more general formulation. The system is allowed to be in descriptor form, rectangular, time-variant, and with the dynamical and measurement noises correlated. We propose a new expression for the filter recursive equations which presents an interesting simple and symmetric structure. Convergence of the associated Riccati recursion and stability properties of the steady-state filter are provided. (C) 2010 Elsevier Ltd. All rights reserved.