956 resultados para constant pressure heat capacity


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aims: To study the development of resistance responses in Campylobacter jejuni to High Hydrostatic Pressure (HHP) treatments after the exposure to different stressful conditions that may be encountered in food processing environments, such as acid pH, elevated temperatures and cold storage. Methods and Results: C. jejuni cells in exponential and stationary growth phase were exposed to different sublethal stresses (acid, heat and cold shocks) prior to evaluate the development of resistance responses to HHP. For exponential-phase cells, neither of the conditions tested increased nor decreased HHP resistance of C. jejuni. For stationary-phase cells, acid and heat adaptation sensitized C. jejuni cells to the subsequent pressure treatment. On the contrary, cold-adapted stationary-phase cells developed resistance to HHP. Conclusions: Whereas C. jejuni can be classified as a stress sensitive microorganism, our findings have demonstrated that it can develop resistance responses under different stressing conditions. The resistance of stationary phase C. jejuni to HHP was increased after cells were exposed to cold temperatures. Significance and Impact of the Study: The results of this study contribute to a better knowledge of the physiology of C. jejuni and its survival to food preservation agents. Results here presented may help in the design of combined processes for food preservation based on HHP technology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Explosive volcanic eruptions cause episodic negative radiative forcing of the climate system. Using coupled atmosphere-ocean general circulation models (AOGCMs) subjected to historical forcing since the late nineteenth century, previous authors have shown that each large volcanic eruption is associated with a sudden drop in ocean heat content and sea-level from which the subsequent recovery is slow. Here we show that this effect may be an artefact of experimental design, caused by the AOGCMs not having been spun up to a steady state with volcanic forcing before the historical integrations begin. Because volcanic forcing has a long-term negative average, a cooling tendency is thus imposed on the ocean in the historical simulation. We recommend that an extra experiment be carried out in parallel to the historical simulation, with constant time-mean historical volcanic forcing, in order to correct for this effect and avoid misinterpretation of ocean heat content changes

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In response to increasing atmospheric con- centrations of greenhouse gases, the rate of time- dependent climate change is determined jointly by the strength of climate feedbacks and the e�ciency of pro- cesses which remove heat from the surface into the deep ocean. This work examines the vertical heat transport processes in the ocean of the HADCM2 atmosphere± ocean general circulation model (AOGCM) in experi- ments with CO2 held constant (control) and increasing at 1% per year (anomaly). The control experiment shows that global average heat exchanges between the upper and lower ocean are dominated by the Southern Ocean, where heat is pumped downwards by the wind- driven circulation and di�uses upwards along sloping isopycnals. This is the reverse of the low-latitude balance used in upwelling±di�usion ocean models, the global average upward di�usive transport being against the temperature gradient. In the anomaly experiment, weakened convection at high latitudes leads to reduced diffusive and convective heat loss from the deep ocean, and hence to net heat uptake, since the advective heat input is less a�ected. Reduction of deep water produc- tion at high latitudes results in reduced upwelling of cold water at low latitudes, giving a further contribution to net heat uptake. On the global average, high-latitude processes thus have a controlling in¯uence. The impor- tant role of di�usion highlights the need to ensure that the schemes employed in AOGCMs give an accurate representation of the relevant sub-grid-scale processes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present simulations of London's meteorology using the Met Office Unified Model with a new, sophisticated surface energy-balance scheme to represent the urban surfaces, called MORUSES. Simulations are performed with the urban surfaces represented and with the urban surfaces replaced with grass in order to calculate the urban increment on the local meteorology. The local urban effects were moderated to some extent by the passage of an onshore flow that propagated up the Thames estuary and across the city, cooling London slightly in the afternoon. Validations of screen-level temperature show encouraging agreement to within 1–2 K, when the urban increment is up to 5 K. The model results are then used to examine factors shaping the spatial and temporal structure of London's atmospheric boundary layer. The simulations reconcile the differences in the temporal evolution of the urban heat island (UHI) shown in various studies and demonstrate that the variation of UHI with time depends strongly on the urban fetch. The UHI at a location downwind of the city centre shows a decrease in UHI during the night, while the UHI at the city centre stays constant. Finally, the UHI at a location upwind of the city centre increases continuously. The magnitude of the UHI by the time of the evening transition increases with urban fetch. The urban increments are largest at night, when the boundary layer is shallow. The boundary layer experiences continued warming after sunset, as the heat from the urban fabric is released, and a weakly convective boundary layer develops across the city. The urban land-use fraction is the dominant control on the spatial structure in the sensible heat flux and the resulting urban increment, although even the weak advection present in this case study is sufficient to advect the peak temperature increments downwind of the most built-up areas. Copyright © 2011 Royal Meteorological Society and British Crown Copyright, the Met Office

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of high-pressure (HP) pretreatment on oil uptake of potato slices is examined in this paper. Potato slices were treated either by HP or thermal blanching, or a combination of thermal blanching followed by HP prior to frying. The effect of HP on starch gelatinization and potato microstructure was assessed by differential scanning calorimeter and environmental scanning electron microscope (ESEM), respectively. After treatments, the slices were fried in sunflower oil at 185 °C for a predetermined time. Frying time was either kept constant (4 min) or varied according to the time needed to reach a desired moisture content of ≈2%. The high pressure applied in this study was found not to be sufficient to cause a significant degree of starch gelatinization. Analysis of the ESEM images showed that blanching had a limited effect on cell wall integrity. HP pretreatment was found to increase the oil uptake marginally. When frying for a fixed time, the highest total oil content was found in slices treated at 200 MPa for 5 min. The oil content was found to increase significantly (p<0.05) to 41.23±1.82 compared to 29.03±0.21 in the control slices. The same effect of pressure on oil content was found when the time of frying varied. On the other hand, HP pretreatment was found to decrease the frying time required to achieve a given moisture content. Thus, high-pressure pretreatment may be used to reduce the frying time, but not oil uptake.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents novel observer-based techniques for the estimation of flow demands in gas networks, from sparse pressure telemetry. A completely observable model is explored, constructed by incorporating difference equations that assume the flow demands are steady. Since the flow demands usually vary slowly with time, this is a reasonable approximation. Two techniques for constructing robust observers are employed: robust eigenstructure assignment and singular value assignment. These techniques help to reduce the effects of the system approximation. Modelling error may be further reduced by making use of known profiles for the flow demands. The theory is extended to deal successfully with the problem of measurement bias. The pressure measurements available are subject to constant biases which degrade the flow demand estimates, and such biases need to be estimated. This is achieved by constructing a further model variation that incorporates the biases into an augmented state vector, but now includes information about the flow demand profiles in a new form.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An isolate of L. monocytogenes Scott A that is tolerant to high hydrostatic pressure (HHP), named AK01, was isolated upon a single pressurization treatment of 400 MPa for 20 min and was further characterized. The survival of exponential- and stationary-phase cells of AK01 in ACES [N-(2-acetamido)-2-aminoethanesulfonic acid] buffer was at least 2 log units higher than that of the wild type over a broad range of pressures (150 to 500 MPa), while both strains showed higher HHP tolerance (piezotolerance) in the stationary than in the exponential phase of growth. In semiskim milk, exponential-phase cells of both strains showed lower reductions upon pressurization than in buffer, but again, AK01 was more piezotolerant than the wild type. The piezotolerance of AK01 was retained for at least 40 generations in rich medium, suggesting a stable phenotype. Interestingly, cells of AK01 lacked flagella, were elongated, and showed slightly lower maximum specific growth rates than the wild type at 8, 22, and 30°C. Moreover, the piezotolerant strain AK01 showed increased resistance to heat, acid, and H2O2 compared with the wild type. The difference in HHP tolerance between the piezotolerant strain and the wild-type strain could not be attributed to differences in membrane fluidity, since strain AK01 and the wild type had identical in situ lipid melting curves as determined by Fourier transform infrared spectroscopy. The demonstrated occurrence of a piezotolerant isolate of L. monocytogenes underscores the need to further investigate the mechanisms underlying HHP resistance of food-borne microorganisms, which in turn will contribute to the appropriate design of safe, accurate, and feasible HHP treatments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper provides a comparative study of the performance of cross-flow and counter-flow M-cycle heat exchangers for dew point cooling. It is recognised that evaporative cooling systems offer a low energy alternative to conventional air conditioning units. Recently emerged dew point cooling, as the renovated evaporative cooling configuration, is claimed to have much higher cooling output over the conventional evaporative modes owing to use of the M-cycle heat exchangers. Cross-flow and counter-flow heat exchangers, as the available structures for M-cycle dew point cooling processing, were theoretically and experimentally investigated to identify the difference in cooling effectiveness of both under the parallel structural/operational conditions, optimise the geometrical sizes of the exchangers and suggest their favourite operational conditions. Through development of a dedicated computer model and case-by-case experimental testing and validation, a parametric study of the cooling performance of the counter-flow and cross-flow heat exchangers was carried out. The results showed the counter-flow exchanger offered greater (around 20% higher) cooling capacity, as well as greater (15%–23% higher) dew-point and wet-bulb effectiveness when equal in physical size and under the same operating conditions. The cross-flow system, however, had a greater (10% higher) Energy Efficiency (COP). As the increased cooling effectiveness will lead to reduced air volume flow rate, smaller system size and lower cost, whilst the size and cost are the inherent barriers for use of dew point cooling as the alternation of the conventional cooling systems, the counter-flow system is considered to offer practical advantages over the cross-flow system that would aid the uptake of this low energy cooling alternative. In line with increased global demand for energy in cooling of building, largely by economic booming of emerging developing nations and recognised global warming, the research results will be of significant importance in terms of promoting deployment of the low energy dew point cooling system, helping reduction of energy use in cooling of buildings and cut of the associated carbon emission.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Forests are a store of carbon and an eco-system that continually removes carbon dioxide from the atmosphere. If they are sustainably managed, the carbon store can be maintained at a constant level, while the trees removed and converted to timber products can form an additional long term carbon store. The total carbon store in the forest and associated ‘wood chain’ therefore increases over time, given appropriate management. This increasing carbon store can be further enhanced with afforestation. The UK’s forest area has increased continually since the early 1900s, although the rate of increase has declined since its peak in the late 1980s, and it is a similar picture in the rest of Europe. The increased sustainable use of timber in construction is a key market incentive for afforestation, which can make a significant contribution to reducing carbon emissions. The case study presented in this paper demonstrates the carbon benefits of a Cross Laminated Timber (CLT) solution for a multi-storey residential building in comparison with a more conventional reinforced concrete solution. The embodied carbon of the building up to completion of construction is considered, together with the stored carbon during the life of the building and the impact of different end of life scenarios. The results of the study show that the total stored carbon in the CLT structural frame is 1215tCO2 (30tCO2 per housing unit). The choice of treatment at end of life has a significant effect on the whole life embodied carbon of the CLT frame, which ranges from -1017 tCO2e for re-use to +153tCO2e for incinerate without energy recovery. All end of life scenarios considered result in lower total CO2e emissions for the CLT frame building compared with the reinforced concrete frame solution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chongqing is the largest directly-controlled municipality in China, which is now undergoing a rapid urbanization. The urbanization rate increased from 35.6% in 2000 to 48.3% in 2007, and it is estimated to reach at least 70% by 2020. The question remains open: What are the consequences of such rapid urbanization in Chongqing in terms of urban microclimate? Furthermore, Chongqing is located within the Three Gorges Reservoir (TGR) region and the upper Yangtze River, where the Three Gorges Reservoir (TGR) project started in 1993 and was completed in 2010. As one of the biggest construction projects in the world with a rising water level of 175m and water storage capacity of about 39.3 billion m3, it would be interesting to investigate how such a gigantic project impacts the surrounding micro-environment, especially in Chongqing. Different research approaches are adopted in the study. Our literature review indicates present studies on the urban climate in Chongqing are mainly confined within the historical trend analysis of several weather stations operated by the Chongqing government, little is known about the spatial distribution of urban air temperature and how the local land cover influences the air temperature, especially when there are rivers running through the Chongqing urban area. To contribute to the present knowledge, a series of field measurement campaigns and numerical simulations were carried out. Two complementary types of field measurements are included: fixed weather stations and mobile transverse measurement. Numerical simulations using a house-developed program are able to predict the urban air temperature in Chongqing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It has long been known that the urban surface energy balance is different to that of a rural surface, and that heating of the urban surface after sunset gives rise to the Urban Heat Island (UHI). Less well known is how flow and turbulence structure above the urban surface are changed during different phases of the urban boundary layer (UBL). This paper presents new observations above both an urban and rural surface and investigates how much UBL structure deviates from classical behaviour. A 5-day, low wind, cloudless, high pressure period over London, UK, was chosen for analysis, during which there was a strong UHI. Boundary layer evolution for both sites was determined by the diurnal cycle in sensible heat flux, with an extended decay period of approximately 4 h for the convective UBL. This is referred to as the “Urban Convective Island” as the surrounding rural area was already stable at this time. Mixing height magnitude depended on the combination of regional temperature profiles and surface temperature. Given the daytime UHI intensity of 1.5∘C, combined with multiple inversions in the temperature profile, urban and rural mixing heights underwent opposite trends over the period, resulting in a factor of three height difference by the fifth day. Nocturnal jets undergoing inertial oscillations were observed aloft in the urban wind profile as soon as the rural boundary layer became stable: clear jet maxima over the urban surface only emerged once the UBL had become stable. This was due to mixing during the Urban Convective Island reducing shear. Analysis of turbulent moments (variance, skewness and kurtosis) showed “upside-down” boundary layer characteristics on some mornings during initial rapid growth of the convective UBL. During the “Urban Convective Island” phase, turbulence structure still resembled a classical convective boundary layer but with some influence from shear aloft, depending on jet strength. These results demonstrate that appropriate choice of Doppler lidar scan patterns can give detailed profiles of UBL flow. Insights drawn from the observations have implications for accuracy of boundary conditions when simulating urban flow and dispersion, as the UBL is clearly the result of processes driven not only by local surface conditions but also regional atmospheric structure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study investigates the effects of temperature and pressure on inactivation of myrosinase extracted from black, brown and yellow mustard seeds. Brown mustard had higher myrosinase activity (2.75 un/mL) than black (1.50 un/mL) and yellow mustard (0.63 un/mL). The extent of enzyme inactivation increased with pressure (600-800 MPa) and temperature (30-70 °C) for all the mustard seeds. However, at combinations of lower pressures (200-400 MPa) and high temperatures (60-80 °C), there was less inactivation. For example, application of 300 MPa and 70 °C for 10 minutes retained 20%, 80% and 65% activity in yellow, black and brown mustard, respectively, whereas the corresponding activity retentions when applying only heat (70 °C, 10min) were 0%, 59% and 35%. Thus, application of moderate pressures (200-400 MPa) can potentially be used to retain myrosinase activity needed for subsequent glucosinolate hydrolysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A general circulation model of intermediate complexity with an idealized Earth-like aquaplanet setup is used to study the impact of changes in the oceanic heat transport on the global atmospheric circulation. Focus is on the atmospheric mean meridional circulation and global thermodynamic properties. The atmosphere counterbalances to a large extent the imposed changes in the oceanic heat transport, but, nonetheless, significant modifications to the atmospheric general circulation are found. Increasing the strength of the oceanic heat transport up to 2.5 PW leads to an increase in the global mean near-surface temperature and to a decrease in its equator-to-pole gradient. For stronger transports, the gradient is reduced further, but the global mean remains approximately constant. This is linked to a cooling and a reversal of the temperature gradient in the tropics. Additionally, a stronger oceanic heat transport leads to a decline in the intensity and a poleward shift of the maxima of both the Hadley and Ferrel cells. Changes in zonal mean diabatic heating and friction impact the properties of the Hadley cell, while the behavior of the Ferrel cell is mostly controlled by friction. The efficiency of the climate machine, the intensity of the Lorenz energy cycle and the material entropy production of the system decline with increased oceanic heat transport. This suggests that the climate system becomes less efficient and turns into a state of reduced entropy production as the enhanced oceanic transport performs a stronger large-scale mixing between geophysical fluids with different temperatures, thus reducing the available energy in the climate system and bringing it closer to a state of thermal equilibrium.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Given the high susceptibility of baby spinach leaves to thermal processing, the use of high hydrostatic pressure (HHP) is explored as a non-thermal blanching method. The effects of HHP were compared with thermal blanching by following residual activity of polyphenol oxidases and peroxidases, colour retention, chlorophyll and carotenoids content, antioxidant capacity and total polyphenols content. Spinach subjected to 700 MPa at 20 ºC for 15 min represented the best treatment among the conditions studied due to its balanced effect on target enzymes and quality indices. The latter treatment reduced enzyme activities of polyphenol oxidases and peroxidases by 86.4 and 76.7 %, respectively. Furthermore, leaves did not present changes in colour and an increase by 13.6 % and 15.6 % was found in chlorophyll and carotenoids content, respectively; regarding phytochemical compounds, retentions of 28.2 % of antioxidant capacity and 77.1 % of polyphenols content were found. Results demonstrated that HHP (700 MPa) at room temperature, when compared with thermal treatments, presented better retention of polyphenols, not significantly different chlorophyll and carotenoids content and no perceptible differences in the instrumental colour evaluated through ΔE value; therefore, it can be considered a realistic practical alternative to the widely used thermal blanching.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objectives were to assess the degree of thermolysis capacity as a characteristic of heat tolerance of the Simmental beef cattle and evaluate the effects of shade and shade type (artificial: AS, trees: TS, or no shade: NS) on daily behavior patterns during summer. Black globe temperature (BGT) was different under the two types of shade (P < 0.05) and was lower under the TS (P < 0.01) and under AS (P > 0.01) than average BGT in the sun. Animals when in AS used more intensely the shade (P = 0.002) mostly lying down under it (10.00-14.00 hours), while time standing was similar (P = 0.107) between TS and NS. Bulls without shade (NS) spent significantly more time at the water trough and most part of the day standing idle (72.4%, 10.1 h/14 h). TS bulls spent more time grazing/standing (P < 0.001). The Simmental bulls that were in TS and AS spent more time ruminating than bulls that stay without shade (NS). The availability of shade changes grazing, rumination and idling behavior of cattle in response to environmental conditions. Shade provided by trees can be more efficient than artificial shading as cattle spent more time grazing when tree shade was available. Thermolysis capacity can be used to select heat-tolerant animals.