543 resultados para confort domestique
Resumo:
En la actualidad, el crecimiento de la población urbana, el incremento de la demanda energética junto al desarrollo tecnológico impulsado en los últimos veinte años han originado un estudio y replanteamiento de los sistemas constructivos empleados. Como consecuencia se han establecido nuevos marcos normativos, marcando nuevos objetivos de confort y de demanda energética. En España, el Código Técnico de la Edificación (aprobado en el Real Decreto 314/2006 de 17 de Marzo) es el marco normativo que establece las exigencias que se deben cumplir al proyectar construir, usar, mantener y conservar los edificios, incluidas sus instalaciones, con el fin de asegurar la calidad, seguridad y salud del usuario, respetando en todo momento su entorno. Para asegurar el cumplimiento de las exigencias del Código Técnico de la Edificación (CTE), se han elaborado diferentes Documentos Básicos (DB). Entre ellos están los documentos básicos DB HR-Protección frente al ruido y el DB HS-Salubridad. En el DB HS 3 Calidad del aire interior, se establecen las condiciones que deben de adoptarse para que los recintos de los edificios se puedan ventilar adecuadamente, eliminando los contaminantes que se produzcan de forma habitual durante un uso normal de los edificios, de forma que se aporte un caudal suficiente de aire exterior y se garantice la extracción y expulsión del aire viciado por los contaminantes. En el apartado 3.1, Condiciones generales de los sistemas de ventilación, se indica que las viviendas deben disponer de un sistema general de ventilación donde el aire debe circular desde los locales secos a los húmedos. Para ello los comedores, los dormitorios y las salas de estar deben de disponer de aberturas de admisión, pudiéndose resolver esta cuestión técnica con diversas soluciones. El DB HR Protección frente al ruido del CTE, establece unos valores del aislamiento acústico a ruido aéreo, entre un recinto protegido y el exterior, en función del uso del edificio y del nivel sonoro continuo equivalente día, Ld de la zona donde se ubique el edificio. El hacer compatibles el cumplimiento de las exigencias de los dos Documentos Básicos anteriormente citados, origina algunas dificultades en los proyectos de edificación actuales. Los proyectistas tienen que recurrir en la mayoría de los casos a nuevos sistemas constructivos o duplicaciones de soluciones existentes, evitando la manipulación de los elementos de regulación de entrada de aire en las viviendas. El objetivo fundamental de la Tesis presentada es el estudio de los efectos que producen la colocación de sistemas de aireación permanente en el aislamiento acústico a ruido aéreo de las ventanas compactas. Se comprueba la influencia de cada uno de los componentes de la ventana compacta: perfiles, unidades de vidrio, sistema de apertura, cajón de persiana, persiana, aireadores, etc. en el aislamiento a ruido aéreo del sistema completo. Los ensayos acústicos se han realizado mediante dos métodos: conforme a la norma UNE-EN ISO 10140-2:2011 Medición en laboratorio del aislamiento acústico al ruido aéreo de los elementos de construcción y mediante intensimetría acústica acorde a la norma UNE-EN ISO 15186-1:2004 Medición del aislamiento acústico en los edificios y de los elementos de construcción utilizando intensidad sonora. Los resultados obtenidos podrán ser de gran utilidad para todos los profesionales que intervienen en el proceso edificatorio: arquitectos, ingenieros, instaladores, promotores, fabricantes de productos, etc., tanto en la obra nueva como en la rehabilitación. En un futuro, podrían incorporarse a los Catálogos y Documentos de Aplicación del CTE, así como a los nuevos programas informáticos de diseño y aislamiento acústico. Con el conocimiento adquirido y su aplicación, se contribuirá a la mejora de la calidad de una edificación más sostenible y eficiente. Se incrementará la productividad y la competitividad de los fabricantes de materiales y sistemas constructivos, aumentando el grado de satisfacción del usuario final con el consiguiente aumento de la calidad de vida de los ciudadanos. También se ampliará el conocimiento técnico de este tipo de sistemas y la compatibilidad entre las distintas exigencias marcadas por la normativa. ABSTRACT At present, the urban population growth, the increase of energy demand and the technological development in the last twenty years have led to a rethinking of the used building systems. As a result, new regulatory frameworks have been established, setting new goals of comfort and energy demand. In Spain, the Building Code, Código Técnico de la Edificación (CTE) (RD 314/2006 of March 17th) is the regulatory framework that establishes the requirements to be met by projecting, building, using, maintaining and preserving buildings, including its facilities in order to ensure the quality, safety and health of the user, always respecting the environment. To ensure compliance with the requirements of the CTE, different technical requirements Documentos básicos (DB) have been developed. Among them, are the DB-HR-Protection against noise and DB-HS-Health. In the DB-HS- part3, Indoor Air Quality, are set the conditions needed to be taken into consideration so that the building enclosures can be adequately ventilated, eliminating pollutants that occur regularly during normal use of the buildings, so that a sufficient airflow of outdoor is supplied and a removal and extraction of stale air pollutants is guaranteed. In section 3.1, General Terms of ventilation systems, is indicated that dwellings must have a general ventilation system where air can circulate from dry to wet enclosures. For this, dining rooms, bedrooms and living rooms should have air intake, being able to resolve this technical issue with various solutions. The DB-HR Protection against noise, provides sound insulation values of airborne sound transmission between a protected room and the outside, depending on the use of the building and the equivalent continuous sound level day, Ld, in the area where the building is located. Satisfying the requirements of the two requirements mentioned above causes some difficulties in current building project. Designers have to rely in most cases, to new construction elements or duplicate existing solutions, avoiding the manipulation of the air intakes elements. The main objective of this Thesis is the study of the effects of permanent intakes systems in the acoustic insulation against airborne noise transmission in compact windows. The influence of each of the components of the compact window is determined: frames, glass units, opening systems, shutter box, trickle vents, etc. in the airborne sound insulation of the entire system. The acoustic survey were performed using two methods: UNE-EN ISO 10140-2: 2011 Laboratory measurements of sound insulation of building elements and UNE-EN ISO 15186-1:2004 Measurement of sound insulation in buildings and of building elements using sound intensity. The obtained results may be useful for all professionals involved in the building process: architects, engineers, installers, developers, manufacturers, etc. in the new construction developments and in rehabilitation. In the future, it could be added to building catalogues and applications of the Spanish Building Code, as well as to the new design and sound insulation software. With the acquired knowledge and its application, there will be a contribution to improve the quality of a more sustainable and efficient construction. Productivity and competitiveness of manufacturers of building materials and components will improve, increasing the degree of satisfaction of the final user with a consequent increase in the quality of life of citizens. Technical knowledge of such systems and compatibility between the various requirements set by the legislation will also expand.
Resumo:
Hoy en día, el proceso de un proyecto sostenible persigue realizar edificios de elevadas prestaciones que son, energéticamente eficientes, saludables y económicamente viables utilizando sabiamente recursos renovables para minimizar el impacto sobre el medio ambiente reduciendo, en lo posible, la demanda de energía, lo que se ha convertido, en la última década, en una prioridad. La Directiva 2002/91/CE "Eficiencia Energética de los Edificios" (y actualizaciones posteriores) ha establecido el marco regulatorio general para el cálculo de los requerimientos energéticos mínimos. Desde esa fecha, el objetivo de cumplir con las nuevas directivas y protocolos ha conducido las políticas energéticas de los distintos países en la misma dirección, centrándose en la necesidad de aumentar la eficiencia energética en los edificios, la adopción de medidas para reducir el consumo, y el fomento de la generación de energía a través de fuentes renovables. Los edificios de energía nula o casi nula (ZEB, Zero Energy Buildings ó NZEB, Net Zero Energy Buildings) deberán convertirse en un estándar de la construcción en Europa y con el fin de equilibrar el consumo de energía, además de reducirlo al mínimo, los edificios necesariamente deberán ser autoproductores de energía. Por esta razón, la envolvente del edifico y en particular las fachadas son importantes para el logro de estos objetivos y la tecnología fotovoltaica puede tener un papel preponderante en este reto. Para promover el uso de la tecnología fotovoltaica, diferentes programas de investigación internacionales fomentan y apoyan soluciones para favorecer la integración completa de éstos sistemas como elementos arquitectónicos y constructivos, los sistemas BIPV (Building Integrated Photovoltaic), sobre todo considerando el próximo futuro hacia edificios NZEB. Se ha constatado en este estudio que todavía hay una falta de información útil disponible sobre los sistemas BIPV, a pesar de que el mercado ofrece una interesante gama de soluciones, en algunos aspectos comparables a los sistemas tradicionales de construcción. Pero por el momento, la falta estandarización y de una regulación armonizada, además de la falta de información en las hojas de datos técnicos (todavía no comparables con las mismas que están disponibles para los materiales de construcción), hacen difícil evaluar adecuadamente la conveniencia y factibilidad de utilizar los componentes BIPV como parte integrante de la envolvente del edificio. Organizaciones internacionales están trabajando para establecer las normas adecuadas y procedimientos de prueba y ensayo para comprobar la seguridad, viabilidad y fiabilidad estos sistemas. Sin embargo, hoy en día, no hay reglas específicas para la evaluación y caracterización completa de un componente fotovoltaico de integración arquitectónica de acuerdo con el Reglamento Europeo de Productos de la Construcción, CPR 305/2011. Los productos BIPV, como elementos de construcción, deben cumplir con diferentes aspectos prácticos como resistencia mecánica y la estabilidad; integridad estructural; seguridad de utilización; protección contra el clima (lluvia, nieve, viento, granizo), el fuego y el ruido, aspectos que se han convertido en requisitos esenciales, en la perspectiva de obtener productos ambientalmente sostenibles, saludables, eficientes energéticamente y económicamente asequibles. Por lo tanto, el módulo / sistema BIPV se convierte en una parte multifuncional del edificio no sólo para ser física y técnicamente "integrado", además de ser una oportunidad innovadora del diseño. Las normas IEC, de uso común en Europa para certificar módulos fotovoltaicos -IEC 61215 e IEC 61646 cualificación de diseño y homologación del tipo para módulos fotovoltaicos de uso terrestre, respectivamente para módulos fotovoltaicos de silicio cristalino y de lámina delgada- atestan únicamente la potencia del módulo fotovoltaico y dan fe de su fiabilidad por un período de tiempo definido, certificando una disminución de potencia dentro de unos límites. Existe también un estándar, en parte en desarrollo, el IEC 61853 (“Ensayos de rendimiento de módulos fotovoltaicos y evaluación energética") cuyo objetivo es la búsqueda de procedimientos y metodologías de prueba apropiados para calcular el rendimiento energético de los módulos fotovoltaicos en diferentes condiciones climáticas. Sin embargo, no existen ensayos normalizados en las condiciones específicas de la instalación (p. ej. sistemas BIPV de fachada). Eso significa que es imposible conocer las efectivas prestaciones de estos sistemas y las condiciones ambientales que se generan en el interior del edificio. La potencia nominal de pico Wp, de un módulo fotovoltaico identifica la máxima potencia eléctrica que éste puede generar bajo condiciones estándares de medida (STC: irradición 1000 W/m2, 25 °C de temperatura del módulo y distribución espectral, AM 1,5) caracterizando eléctricamente el módulo PV en condiciones específicas con el fin de poder comparar los diferentes módulos y tecnologías. El vatio pico (Wp por su abreviatura en inglés) es la medida de la potencia nominal del módulo PV y no es suficiente para evaluar el comportamiento y producción del panel en términos de vatios hora en las diferentes condiciones de operación, y tampoco permite predecir con convicción la eficiencia y el comportamiento energético de un determinado módulo en condiciones ambientales y de instalación reales. Un adecuado elemento de integración arquitectónica de fachada, por ejemplo, debería tener en cuenta propiedades térmicas y de aislamiento, factores como la transparencia para permitir ganancias solares o un buen control solar si es necesario, aspectos vinculados y dependientes en gran medida de las condiciones climáticas y del nivel de confort requerido en el edificio, lo que implica una necesidad de adaptación a cada contexto específico para obtener el mejor resultado. Sin embargo, la influencia en condiciones reales de operación de las diferentes soluciones fotovoltaicas de integración, en el consumo de energía del edificio no es fácil de evaluar. Los aspectos térmicos del interior del ambiente o de iluminación, al utilizar módulos BIPV semitransparentes por ejemplo, son aún desconocidos. Como se dijo antes, la utilización de componentes de integración arquitectónica fotovoltaicos y el uso de energía renovable ya es un hecho para producir energía limpia, pero también sería importante conocer su posible contribución para mejorar el confort y la salud de los ocupantes del edificio. Aspectos como el confort, la protección o transmisión de luz natural, el aislamiento térmico, el consumo energético o la generación de energía son aspectos que suelen considerarse independientemente, mientras que todos juntos contribuyen, sin embargo, al balance energético global del edificio. Además, la necesidad de dar prioridad a una orientación determinada del edificio, para alcanzar el mayor beneficio de la producción de energía eléctrica o térmica, en el caso de sistemas activos y pasivos, respectivamente, podría hacer estos últimos incompatibles, pero no necesariamente. Se necesita un enfoque holístico que permita arquitectos e ingenieros implementar sistemas tecnológicos que trabajen en sinergia. Se ha planteado por ello un nuevo concepto: "C-BIPV, elemento fotovoltaico consciente integrado", esto significa necesariamente conocer los efectos positivos o negativos (en términos de confort y de energía) en condiciones reales de funcionamiento e instalación. Propósito de la tesis, método y resultados Los sistemas fotovoltaicos integrados en fachada son a menudo soluciones de vidrio fácilmente integrables, ya que por lo general están hechos a medida. Estos componentes BIPV semitransparentes, integrados en el cerramiento proporcionan iluminación natural y también sombra, lo que evita el sobrecalentamiento en los momentos de excesivo calor, aunque como componente estático, asimismo evitan las posibles contribuciones pasivas de ganancias solares en los meses fríos. Además, la temperatura del módulo varía considerablemente en ciertas circunstancias influenciada por la tecnología fotovoltaica instalada, la radiación solar, el sistema de montaje, la tipología de instalación, falta de ventilación, etc. Este factor, puede suponer un aumento adicional de la carga térmica en el edificio, altamente variable y difícil de cuantificar. Se necesitan, en relación con esto, más conocimientos sobre el confort ambiental interior en los edificios que utilizan tecnologías fotovoltaicas integradas, para abrir de ese modo, una nueva perspectiva de la investigación. Con este fin, se ha diseñado, proyectado y construido una instalación de pruebas al aire libre, el BIPV Env-lab "BIPV Test Laboratory", para la caracterización integral de los diferentes módulos semitransparentes BIPV. Se han definido también el método y el protocolo de ensayos de caracterización en el contexto de un edificio y en condiciones climáticas y de funcionamiento reales. Esto ha sido posible una vez evaluado el estado de la técnica y la investigación, los aspectos que influyen en la integración arquitectónica y los diferentes tipos de integración, después de haber examinado los métodos de ensayo para los componentes de construcción y fotovoltaicos, en condiciones de operación utilizadas hasta ahora. El laboratorio de pruebas experimentales, que consiste en dos habitaciones idénticas a escala real, 1:1, ha sido equipado con sensores y todos los sistemas de monitorización gracias a los cuales es posible obtener datos fiables para evaluar las prestaciones térmicas, de iluminación y el rendimiento eléctrico de los módulos fotovoltaicos. Este laboratorio permite el estudio de tres diferentes aspectos que influencian el confort y consumo de energía del edificio: el confort térmico, lumínico, y el rendimiento energético global (demanda/producción de energía) de los módulos BIPV. Conociendo el balance de energía para cada tecnología solar fotovoltaica experimentada, es posible determinar cuál funciona mejor en cada caso específico. Se ha propuesto una metodología teórica para la evaluación de estos parámetros, definidos en esta tesis como índices o indicadores que consideran cuestiones relacionados con el bienestar, la energía y el rendimiento energético global de los componentes BIPV. Esta metodología considera y tiene en cuenta las normas reglamentarias y estándares existentes para cada aspecto, relacionándolos entre sí. Diferentes módulos BIPV de doble vidrio aislante, semitransparentes, representativos de diferentes tecnologías fotovoltaicas (tecnología de silicio monocristalino, m-Si; de capa fina en silicio amorfo unión simple, a-Si y de capa fina en diseleniuro de cobre e indio, CIS) fueron seleccionados para llevar a cabo una serie de pruebas experimentales al objeto de demostrar la validez del método de caracterización propuesto. Como resultado final, se ha desarrollado y generado el Diagrama Caracterización Integral DCI, un sistema gráfico y visual para representar los resultados y gestionar la información, una herramienta operativa útil para la toma de decisiones con respecto a las instalaciones fotovoltaicas. Este diagrama muestra todos los conceptos y parámetros estudiados en relación con los demás y ofrece visualmente toda la información cualitativa y cuantitativa sobre la eficiencia energética de los componentes BIPV, por caracterizarlos de manera integral. ABSTRACT A sustainable design process today is intended to produce high-performance buildings that are energy-efficient, healthy and economically feasible, by wisely using renewable resources to minimize the impact on the environment and to reduce, as much as possible, the energy demand. In the last decade, the reduction of energy needs in buildings has become a top priority. The Directive 2002/91/EC “Energy Performance of Buildings” (and its subsequent updates) established a general regulatory framework’s methodology for calculation of minimum energy requirements. Since then, the aim of fulfilling new directives and protocols has led the energy policies in several countries in a similar direction that is, focusing on the need of increasing energy efficiency in buildings, taking measures to reduce energy consumption, and fostering the use of renewable sources. Zero Energy Buildings or Net Zero Energy Buildings will become a standard in the European building industry and in order to balance energy consumption, buildings, in addition to reduce the end-use consumption should necessarily become selfenergy producers. For this reason, the façade system plays an important role for achieving these energy and environmental goals and Photovoltaic can play a leading role in this challenge. To promote the use of photovoltaic technology in buildings, international research programs encourage and support solutions, which favors the complete integration of photovoltaic devices as an architectural element, the so-called BIPV (Building Integrated Photovoltaic), furthermore facing to next future towards net-zero energy buildings. Therefore, the BIPV module/system becomes a multifunctional building layer, not only physically and functionally “integrated” in the building, but also used as an innovative chance for the building envelope design. It has been found in this study that there is still a lack of useful information about BIPV for architects and designers even though the market is providing more and more interesting solutions, sometimes comparable to the existing traditional building systems. However at the moment, the lack of an harmonized regulation and standardization besides to the non-accuracy in the technical BIPV datasheets (not yet comparable with the same ones available for building materials), makes difficult for a designer to properly evaluate the fesibility of this BIPV components when used as a technological system of the building skin. International organizations are working to establish the most suitable standards and test procedures to check the safety, feasibility and reliability of BIPV systems. Anyway, nowadays, there are no specific rules for a complete characterization and evaluation of a BIPV component according to the European Construction Product Regulation, CPR 305/2011. BIPV products, as building components, must comply with different practical aspects such as mechanical resistance and stability; structural integrity; safety in use; protection against weather (rain, snow, wind, hail); fire and noise: aspects that have become essential requirements in the perspective of more and more environmentally sustainable, healthy, energy efficient and economically affordable products. IEC standards, commonly used in Europe to certify PV modules (IEC 61215 and IEC 61646 respectively crystalline and thin-film ‘Terrestrial PV Modules-Design Qualification and Type Approval’), attest the feasibility and reliability of PV modules for a defined period of time with a limited power decrease. There is also a standard (IEC 61853, ‘Performance Testing and Energy Rating of Terrestrial PV Modules’) still under preparation, whose aim is finding appropriate test procedures and methodologies to calculate the energy yield of PV modules under different climate conditions. Furthermore, the lack of tests in specific conditions of installation (e.g. façade BIPV devices) means that it is difficult knowing the exact effective performance of these systems and the environmental conditions in which the building will operate. The nominal PV power at Standard Test Conditions, STC (1.000 W/m2, 25 °C temperature and AM 1.5) is usually measured in indoor laboratories, and it characterizes the PV module at specific conditions in order to be able to compare different modules and technologies on a first step. The “Watt-peak” is not enough to evaluate the panel performance in terms of Watt-hours of various modules under different operating conditions, and it gives no assurance of being able to predict the energy performance of a certain module at given environmental conditions. A proper BIPV element for façade should take into account thermal and insulation properties, factors as transparency to allow solar gains if possible or a good solar control if necessary, aspects that are linked and high dependent on climate conditions and on the level of comfort to be reached. However, the influence of different façade integrated photovoltaic solutions on the building energy consumption is not easy to assess under real operating conditions. Thermal aspects, indoor temperatures or luminance level that can be expected using building integrated PV (BIPV) modules are not well known. As said before, integrated photovoltaic BIPV components and the use of renewable energy is already a standard for green energy production, but would also be important to know the possible contribution to improve the comfort and health of building occupants. Comfort, light transmission or protection, thermal insulation or thermal/electricity power production are aspects that are usually considered alone, while all together contribute to the building global energy balance. Besides, the need to prioritize a particular building envelope orientation to harvest the most benefit from the electrical or thermal energy production, in the case of active and passive systems respectively might be not compatible, but also not necessary. A holistic approach is needed to enable architects and engineers implementing technological systems working in synergy. A new concept have been suggested: “C-BIPV, conscious integrated BIPV”. BIPV systems have to be “consciously integrated” which means that it is essential to know the positive and negative effects in terms of comfort and energy under real operating conditions. Purpose of the work, method and results The façade-integrated photovoltaic systems are often glass solutions easily integrable, as they usually are custommade. These BIPV semi-transparent components integrated as a window element provides natural lighting and shade that prevents overheating at times of excessive heat, but as static component, likewise avoid the possible solar gains contributions in the cold months. In addition, the temperature of the module varies considerably in certain circumstances influenced by the PV technology installed, solar radiation, mounting system, lack of ventilation, etc. This factor may result in additional heat input in the building highly variable and difficult to quantify. In addition, further insights into the indoor environmental comfort in buildings using integrated photovoltaic technologies are needed to open up thereby, a new research perspective. This research aims to study their behaviour through a series of experiments in order to define the real influence on comfort aspects and on global energy building consumption, as well as, electrical and thermal characteristics of these devices. The final objective was to analyze a whole set of issues that influence the global energy consumption/production in a building using BIPV modules by quantifying the global energy balance and the BIPV system real performances. Other qualitative issues to be studied were comfort aspect (thermal and lighting aspects) and the electrical behaviour of different BIPV technologies for vertical integration, aspects that influence both energy consumption and electricity production. Thus, it will be possible to obtain a comprehensive global characterization of BIPV systems. A specific design of an outdoor test facility, the BIPV Env-lab “BIPV Test Laboratory”, for the integral characterization of different BIPV semi-transparent modules was developed and built. The method and test protocol for the BIPV characterization was also defined in a real building context and weather conditions. This has been possible once assessed the state of the art and research, the aspects that influence the architectural integration and the different possibilities and types of integration for PV and after having examined the test methods for building and photovoltaic components, under operation conditions heretofore used. The test laboratory that consists in two equivalent test rooms (1:1) has a monitoring system in which reliable data of thermal, daylighting and electrical performances can be obtained for the evaluation of PV modules. The experimental set-up facility (testing room) allows studying three different aspects that affect building energy consumption and comfort issues: the thermal indoor comfort, the lighting comfort and the energy performance of BIPV modules tested under real environmental conditions. Knowing the energy balance for each experimented solar technology, it is possible to determine which one performs best. A theoretical methodology has been proposed for evaluating these parameters, as defined in this thesis as indices or indicators, which regard comfort issues, energy and the overall performance of BIPV components. This methodology considers the existing regulatory standards for each aspect, relating them to one another. A set of insulated glass BIPV modules see-through and light-through, representative of different PV technologies (mono-crystalline silicon technology, mc-Si, amorphous silicon thin film single junction, a-Si and copper indium selenide thin film technology CIS) were selected for a series of experimental tests in order to demonstrate the validity of the proposed characterization method. As result, it has been developed and generated the ICD Integral Characterization Diagram, a graphic and visual system to represent the results and manage information, a useful operational tool for decision-making regarding to photovoltaic installations. This diagram shows all concepts and parameters studied in relation to each other and visually provides access to all the results obtained during the experimental phase to make available all the qualitative and quantitative information on the energy performance of the BIPV components by characterizing them in a comprehensive way.
Resumo:
La edificación residencial existente en España y en Europa se encuentra abocada a una rehabilitación profunda para cumplir los objetivos marcados en la estrategia europea para el año 2050. Estos, para el sector de la edificación, se proponen una reducción del 90% de emisiones de gases de efecto invernadero (GEI) respecto a niveles del año 1990. Este plan a largo plazo establece hitos intermedios de control, con objetivos parciales para el año 2020 y 2030. El objetivo último es aprovechar el potencial de reducción de demanda energética del sector de la edificación, del cual la edificación residencial supone el 85% en España. Dentro de estos requerimientos, de reducción de demanda energética en la edificación, la ventilación en la edificación residencial se convierte en uno de los retos a resolver por su vinculación directa a la salud y el confort de los ocupantes de la misma, y al mismo tiempo su relación proporcional con la demanda energética que presenta el edificio asociada al acondicionamiento térmico. Gran parte de las pérdidas térmicas de la edificación residencial se producen por el aire de renovación y la infiltración de aire a través de la envolvente. La directiva europea de eficiencia energética de la edificación (EPBD), que establece las directrices necesarias para alcanzar los objetivos de este sector en cuanto a emisiones de CO2 y gases de efecto invernadero (GEI), contempla la ventilación con aire limpio como un requisito fundamental a tener en cuenta de cara a las nuevas construcciones y a la rehabilitación energética de los edificios existentes. El síndrome del edificio enfermo, un conjunto de molestias y síntomas asociados a la baja calidad del aire de edificios no residenciales que surgió a raíz de la crisis del petróleo de 1973, tuvo su origen en una ventilación deficiente y una renovación del aire interior insuficiente de estos edificios, producto del intento de ahorro en la factura energética. Teniendo en cuenta que, de media, pasamos un 58% de nuestro tiempo en las viviendas, es fundamental cuidar la calidad del aire interior y no empeorarla aplicando medidas de “eficiencia energética” con efectos no esperados. Para conseguir esto es fundamental conocer en profundidad cómo se produce la ventilación en la edificación en bloque en España en sus aspectos de calidad del aire interior y demanda energética asociada a la ventilación. El objetivo de esta tesis es establecer una metodología de caracterización y de optimización de las necesidades de ventilación para los espacios residenciales existentes en España que aúne el doble objetivo de garantizar la calidad ambiental y reducir la demanda energética de los mismos. La caracterización del parque edificatorio residencial español en cuanto a ventilación es concluyente: La vivienda en España se distribuye principalmente en tres periodos en los que se encuentran más del 80% del total de las viviendas construidas. El periodo anterior a las normas básicas de la edificación (NBE), de 1960 a 1980, el periodo desde 1980 al año 2005, con el mayor número total de viviendas construidas, guiado por la NTE ISV 75, y el periodo correspondiente a la edificación construida a partir del Código Técnico de la Edificación, en 2006, cuyo documento básico de condiciones de salubridad (DB HS3) es la primera norma de obligado cumplimiento en diseño y dimensionamiento de ventilación residencial en España. La selección de un modelo de bloque de viviendas de referencia, un valor medio y representativo, seleccionado de entre estos periodos, pero con cualidades que se extienden más allá de uno de ellos, nos permite realizar un intensivo análisis comparativo de las condiciones de calidad de aire interior y la demanda energética del mismo, aplicando las distintas configuraciones que presenta la ventilación en viviendas dependiendo del escenario o época constructiva (o normativa) en que esta fuera construida. Este análisis se lleva a cabo apoyándose en un doble enfoque: el modelado numérico de simulaciones y el análisis de datos experimentales, para comprobar y afinar los modelos y observar la situación real de las viviendas en estos dos aspectos. Gracias a las conclusiones del análisis previo, se define una estrategia de optimización de la ventilación basada fundamentalmente en dos medidas: 1) La introducción de un sistema de extracción mecánica y recuperación de calor que permita reducir la demanda energética debida a la renovación del aire y a la vez diluir los contaminantes interiores más eficazmente para mejorar, de esta forma, la calidad del ambiente interior. 2) La racionalización del horario de utilización de estos sistemas, no malgastando la energía en periodos de no ocupación, permitiendo una leve ventilación de fondo, debida a la infiltración, que no incida en pérdidas energéticas cuantiosas. A esta optimización, además de aplicar la metodología de análisis previo, en cuanto a demanda energética y calidad del aire, se aplica una valoración económica integradora y comparativa basada en el reglamento delegado EU244/2012 de coste óptimo (Cost Optimal Methodology). Los resultados principales de esta tesis son: • Un diagnóstico de la calidad del aire interior de la edificación residencial en España y su demanda energética asociada, imprescindible para lograr una rehabilitación energética profunda garantizando la calidad del aire interior. • Un indicador de la relación directa entre calidad de aire y demanda energética, para evaluar la adecuación de los sistemas de ventilación, respecto de las nuevas normativas de eficiencia energética y ventilación. • Una estrategia de optimización, que ofrece una alternativa de intervención, y la aplicación de un método de valoración que permite evaluar la amortización comparada de la instalación de los sistemas. ABSTRACT The housing building stock already built in Spain and Europe faces a deep renovation in the present and near future to accomplish with the objectives agreed in the European strategy for 2050. These objectives, for the building sector, are set in a 90% of Green House Gases (GHG) reduction compared to levels in 1990. This long‐term plan has set milestones to control the correct advance of achievement in 2020 and 2030. The main objective is to take advantage of the great potential to reduce energy demand from the building sector, in which housing represents 85% share in Spain. Among this reduction on building energy demand requirements, ventilation of dwellings becomes one of the challenges to solve as it’s directly connected to the indoor air quality (IAQ) and comfort conditions for the users, as well as proportional to the building energy demand on thermal conditioning. A big share of thermal losses in housing is caused by air renovation and infiltration through the envelope leaks. The European Directive on Building energy performance (EPBD), establishes the roots needed to reach the building sector objectives in terms of CO2 and GHG emissions. This directive sets the ventilation and renovation with clean air of the new and existing buildings as a fundamental requirement. The Sick Building Syndrome (SBS), an aggregation of symptoms and annoys associated to low air quality in non residential buildings, appeared as common after the 1973 oil crisis. It is originated in defective ventilation systems and deficient air renovation rates, as a consequence of trying to lower the energy bill. Accounting that we spend 58% of our time in dwellings, it becomes crucial to look after the indoor air quality and focus in not worsening it by applying “energy efficient” measures, with not expected side effects. To do so, it is primary to research in deep how the ventilation takes place in the housing blocks in Spain, in the aspects related to IAQ and ventilation energy demand. This thesis main objective is to establish a characterization and optimization methodology regarding the ventilation needs for existing housing in Spain, considering the twofold objective of guaranteeing the air quality as reducing the energy demand. The characterization of the existing housing building stock in Spain regarding ventilation is conclusive. More of 80% of the housing stock is distributed in 3 main periods: before the implementation of the firsts regulations on building comfort conditions (Normas Básicas de la Edificación), from 1960 to 1980; the period after the first recommendations on ventilation (NTE ISV 75) for housing were set, around 1980 until 2005 and; the period corresponding to the housing built after the existing mandatory regulation in terms of indoor sanity conditions and ventilation (Spanish Building Code, DB HS3) was set, in 2006. Selecting a representative blueprint of a housing block in Spain, which has medium characteristics not just within the 3 periods mention, but which qualities extent beyond the 3 of them, allows the next step, analyzing. This comparative and intense analyzing phase is focused on the air indoor conditions and the related energy demand, applying different configurations to the ventilation systems according to the different constructive or regulation period in which the building is built. This analysis is also twofold: 1) Numerical modeling with computer simulations and 2) experimental data collection from existing housing in real conditions to check and refine the models to be tested. Thanks to the analyzing phase conclusions, an optimization strategy on the ventilation of the housing stock is set, based on two actions to take: 1) To introduce a mechanical exhaust and intake ventilation system with heat recovery that allows reducing energy demand, as improves the capacity of the system to dilute the pollutant load. This way, the environmental quality is improved. 2) To optimize the schedule of the system use, avoids waste of energy in no occupancy periods, relying ventilation during this time in a light infiltration ventilation, intended not to become large and not causing extra energy losses. Apart from applying the previous analyzing methodology to the optimization strategy, regarding energy demand and air quality, a ROI valorization is performed, based on the cost optimal methodology (delegated regulation EU244/2012). The main results from the thesis are: • To obtain a through diagnose regarding air quality and energy demand for the existing housing stock in Spain, unavoidable to reach a energy deep retrofitting scheme with no air quality worsening. • To obtain a marker to relate air quality and energy demand and evaluate adequateness of ventilation systems, for the new regulations to come. • To establish an optimization strategy to improve both air quality and energy demand, applying a compared valorization methodology to obtain the Return On Investment (ROI).
Resumo:
El pasado 10 de diciembre volvimos al concesionario John Deere de Olías del Rey (Toledo). En esta ocasión para ensayar un modelo de la nueva serie 8R, el 824R, en el que comprobamos la facilidad de uso, el confort, y la conectividad global (fabricante, concesionario, operador y dueño de la explotación unidos en tiempo real)
Resumo:
El Camino de Santiago, ha experimentado un crecimiento exponencial, durante los últimos años, llegando a triplicarse el número de peregrinos. Esto se ha traducido en la necesidad de aumentar el número de albergues a lo largo del Camino de Santiago. Por otro lado, nos encontramos con que reducir la demanda energética y las emisiones de CO2 son algunos de los principales retos que se plantea la arquitectura actual, para cumplir los objetivos marcados por la Unión Europea en el 2020, 2030 y 2050. Surge por tanto el proceso de la rehabilitación energética, como la opción más lógica y viable para comenzar a hablar de posibles soluciones a un problema global (búsqueda de construcciones más eficaces y sostenibles) solventando a su vez una problemática concreta (creciente demanda de albergues de peregrinos). La ruta concreta seleccionada como marco para llevar a cabo el análisis ha sido la de la Vía de la Plata, hilo conductor de historia a través de nuestro país y conexión natural entre las distintas zonas climáticas españolas (mediterránea, continental y atlántica). Para ello, cuatro ciudades han sido seleccionadas como objeto de análisis: Sevilla, Cáceres, Zamora y Santiago de Compostela. El objetivo central de esta investigación ha sido la selección y análisis de una serie de estrategias para la rehabilitación energética de los albergues de la Vía de Plata. Estas estrategias han sido clasificadas atendiendo al nivel de reforma arquitectónica (bajo, medio y alto), tipo de contexto (urbano y rural), propiedades de la envolvente, proporción y orientación de los huecos y la morfología del edificio. Se ha planteado como hipótesis de trabajo que, bajo los criterios bioclimáticos adecuados, y atendiendo a unas necesidades de confort ajustadas al uso transitorio de los albergues, su demanda energética podría verse reducida en algunas de las regiones climáticas españolas analizadas, dependiendo de la estrategia seleccionada. Se ha obtenido en total una casuística de más de 600 potenciales escenarios, que ha permitido obtener una visión global del funcionamiento de los albergues a lo largo de la península, atendiendo a diferentes parámetros, principalmente enfocados en torno a criterios de confort, demanda energética y emisiones de CO2. Como tendencia general, los albergues de la mitad más septentrional, presentan menores niveles de demanda energética y emisiones de CO2 en contextos urbanos, teniendo un gran impacto en su funcionamiento las estrategias planteadas. Esta tendencia se invierte en la zona sur de la península, representada en este caso por Cáceres y Sevilla, donde las demandas son más elevados, siendo especialmente sensibles al aumento de área de hueco y las consiguientes ganancias solares. En el contexto rural serán Zamora y Santiago las que presenten niveles de demanda energética más elevados, mientras que Cáceres y Sevilla presentan los niveles más elevados de emisiones de CO2, por su demanda predominante de refrigeración, directamente relacionada con el consumo eléctrico de los albergues. El conjunto de resultados obtenidos ha servido para analizar, a diferentes escalas y con distintos enfoques, el funcionamiento de las estrategias de rehabilitación energética propuestas, para cada una de las regiones climáticas seleccionadas. ABSTRACT Saint James Way has experienced a huge increase over the last years, reaching values up to three times higher than fifteen years ago. Therefore, the need for more hostels for the pilgrims has become an issue. On the other hand, reducing the energy demand and CO2 emissions within the built environment is one of the main challenges of current architecture, in order to achieve the proposed targets for 2020, 2030 and 2050 by the European Union. In this context, energy refurbishment shows up as the most logical and viable option, to discuss about potential solutions for global concerns (more sustainable and efficient constructions) solving at the same time particular issues (growing demand of pilgrim´s hostels). The selected route to undertake this analysis is known as “Vía de la Plata”, historical connection from the South to the North of Spain and a natural link among the different climate zones (Mediterranean, continental and atlantic). The four cities selected for the analysis as the most representatives of this route were; Sevilla, Cáceres, Zamora and Santiago de Compostela. The final target of this research was to select and analyse certain strategies for the energy refurbishment of the hostels on the mentioned Way. These strategies were classified according to the level of architectural refurbishment (low, medium or high), type of context (urban or rural), properties of the envelope, proportion and orientation of the windows and the morphology of the building. The hypothesis of the research is based on the believe that, under the right environmental criteria and with comfort levels adjusted to the transient type of use of the hostels, the energy demand could be reduced in some of the analysed climate regions, depending on the selected strategies. Six hundred potential scenarios were assessed, what allowed for a general vision on the hostels performance throughout the country, according to different parameters, focused on comfort criteria, energy demands and CO2 emissions. As a general trend, the hostels on the northern part of Spain show lower levels of energy demand and CO2 emissions in urban contexts, with a great impact of the proposed strategies on reducing the original demands. This trend is reversed on the South (Cáceres and Seville), were demands are higher, specially with greater glazing ratios. Hostels in the countryside show higher levels of demand on the North of Spain (Zamora and Santiago), but the cities on the South produce higher levels of CO2 emissions as they are mainly driven by cooling demands, directly related in this analysis to the electrical consumption of the hostels. Final results were used to understand, at different scales and from different points of view, how each one of the proposed strategies performs for each one of the selected climate zones.
Resumo:
El cambio climático y sus efectos requieren con urgencia el desarrollo de estrategias capaces no solo de mitigar pero también permitir la adaptación de los sistemas afectados por este fenómeno a los cambios que están provocando a nivel mundial. Olas de calor más largas y frecuentes, inundaciones, y graves sequías aumentan la vulnerabilidad de la población, especialmente en asentamientos urbanos. Este fenómeno y sus soluciones potenciales han sido ampliamente estudiados en las últimas décadas desde diferentes perspectivas y escalas que analizan desde el fenómeno regional de isla de calor al aumento de la intensidad energética necesaria en los edificios para mantener las condiciones de confort en los escenarios de calentamiento que se predicen. Su comprensión requiere el entendimiento de este fenómeno y un profundo análisis de las estrategias que pueden corregirlo y adaptarse a él. En la búsqueda de soluciones a este problema, las estrategias que incorporan sistemas naturales tales como las cubiertas ajardinadas, las fachadas vegetadas y bosques urbanos, se presentan como opciones de diseño capaces de proporcionan múltiples servicios al ecosistema urbano y de regular y hacer frente a los efectos del cambio climático. Entre los servicios que aportan estos sistemas naturales se incluyen la gestión de agua de tormentas, el control del efecto isla de calor, la mejora de la calidad del aire y del agua, el aumento de la diversidad, y como consecuencia de todo lo anterior, la reducción de la huella ecológica de las ciudades. En la última década, se han desarrollado múltiples estudios para evaluar y cuantificar los servicios al ecosistema proporcionados por las infraestructuras verdes, y específicamente las cubiertas ajardinadas, sin embargo, determinados servicios como la capacidad de la regulación del microclima urbano no ha sido apenas estudiados. La mayor parte de la literatura en este campo la componen estudios relacionados con la capacidad de las cubiertas ajardinadas de reducir el efecto de la isla de calor, en una escala local, o acerca de la reducción de la demanda energética de refrigeración debida a la instalación de cubiertas ajardinadas en la escala de edificio. La escala intermedia entre estos dos ámbitos, la calle, desde su ámbito habitable cercano al suelo hasta el límite superior del cañón urbano que configura, no han sido objeto detallado de estudio por lo que es esta escala el objeto de esta tesis doctoral. Esta investigación tiene como objeto contribuir en este campo y aportar un mayor entendimiento a través de la cuantificación del impacto de las cubiertas ajardinadas sobre la temperatura y humedad en el cañón urbano en la escala de calle y con un especial foco en el nivel peatonal. El primer paso de esta investigación ha sido la definición del objeto de estudio a través del análisis y revisión de trabajos tanto teóricos como empíricos que investigan los efectos de cubiertas ajardinadas en el entorno construido, entendidas como una herramienta para la adaptación y mitigación del impacto del cambio climático en las ciudades. La literatura analizada, revela el gran potencial de los sistemas vegetales como herramientas para el diseño pasivo puesto que no solo son capaces de mejorar las condiciones climáticas y microclimaticas en las ciudades reduciendo su demanda energética, sino también la necesidad de mayor análisis en la escala de calle donde confluyen el clima, las superficies urbanas y materiales y vegetación. Este análisis requiere una metodología donde se integren la respuesta térmica de edificios, las variaciones en los patrones de viento y radiación, y la interacción con la vegetación, por lo que un análisis cuantitativo puede ayudar a definir las estrategias más efectivas para lograr espacios urbanos más habitables. En este contexto, el objetivo principal de esta investigación ha sido la evaluación cuantitativa del impacto de la cubierta ajardinada en el microclima urbano a escala de barrio en condiciones de verano en los climas mediterráneos continentales. Para el logro de este objetivo, se ha seguido un proceso que persigue identificar los modelos y herramientas de cálculo capaces de capturar el efecto de la cubierta ajardinada sobre el microclima, identificar los parámetros que potencian o limitan este efecto, y cuantificar las variaciones que microclima creado en el cañón urbano produce en el consumo de energía de los edificios que rodean éste espacio. La hipótesis principal detrás de esta investigación y donde los objetivos anteriores se basan es el siguiente: "una cubierta ajardinada instalada en edificios de mediana altura favorece el establecimiento de microclimas a nivel peatonal y reduce las temperaturas en el entorno urbano donde se encuentra”. Con el fin de verificar la hipótesis anterior y alcanzar los objetivos propuestos se ha seguido la siguiente metodología: • definición del alcance y limitaciones del análisis • Selección de las herramientas y modelos de análisis • análisis teórico de los parámetros que afectan el efecto de las cubiertas ajardinadas • análisis experimental; • modelización energética • conclusiones y futuras líneas de trabajo Dada la complejidad de los fenómenos que intervienen en la generación de unas determinadas condiciones microclimáticas, se ha limitado el objeto de este estudio a las variables de temperatura y humedad, y sólo se han tenido en cuenta los componentes bióticos y abióticos del sistema, que incluyen la morfología, características superficiales del entorno estudiado, así como los elementos vegetales. Los componentes antrópicos no se han incluido en este análisis. La búsqueda de herramientas adecuadas para cumplir con los objetivos de este análisis ha concluido en la selección de ENVI-met v4 como el software más adecuado para esta investigación por su capacidad para representar los complejos fenómenos que caracterizan el microclima en cañones urbanos, en una escala temporal diaria y con unas escala local de vecindario. Esta herramienta supera el desafío que plantean los requisitos informáticos de un cálculo completo basado en elementos finitos realizados a través de herramientas de dinámica de fluidos computacional (CFD) que requieren una capacidad de cálculo computacional y tiempo privativos y en una escala dimensional y temporal limitada a esta capacidad computacional lo que no responde a los objetivos de esta investigación. ENVI-met 4 se basa es un modelo tridimensional del micro clima diseñado para simular las interacciones superficie-planta-aire en entornos urbanos. Basado en las ecuaciones fundamentales del equilibrio que representan, la conservación de masa, energía y momento. ENVI-met es un software predictivo, y como primer paso ha requerido la definición de las condiciones iniciales de contorno que se utilizan como punto de partida por el software para generar su propio perfil de temperatura y humedad diaria basada en la localización de la construcción, geometría, vegetación y las superficies de características físicas del entorno. La geometría de base utilizada para este primer análisis se ha basado en una estructura típica en cuanto al trazado urbano situada en Madrid que se ha simulado con una cubierta tradicional y una cubierta ajardinada en sus edificios. La estructura urbana seleccionada para este análisis comparativo es una red ortogonal con las calles principales orientadas este-oeste. El edificio típico que compone el vecindario se ha definido como “business as usual” (BAU) y se ha definido con una cubierta de baldosa de hormigón estándar, con un albedo 0.3, paredes con albedo 0.2 (construcción de muro de ladrillo típico) y cerramientos adiabáticos para evitar las posibles interferencias causadas por el intercambio térmico con el ambiente interior del edificio en los resultados del análisis. Para el caso de la cubierta ajardinada, se mantiene la misma geometría y características del edificio con excepción de la cobertura superficial de la azotea. Las baldosas de hormigón se han modificado con una cubierta ajardinada extensiva cubierta con plantas xerófilas, típicas en el clima de Madrid y caracterizado por su índice de densidad foliar, el “leaf area density” (LAD), que es la superficie total de superficie de hojas por unidad de volumen (m2/m3). El análisis se centra en los cañones urbanos entendidos como el espacio de calle comprendido entre los límites geométricos de la calle, verticales y horizontales, y el nivel superior de la cota urbana nivel de cubiertas. Los escenarios analizados se basan en la variación de la los principales parámetros que según la literatura analizada condicionan las variaciones microclimáticas en el ámbito urbano afectado por la vegetación, la velocidad del viento y el LAD de la azotea. Los resultados han sido registrados bajo condiciones de exposición solar diferentes. Las simulaciones fueron realizadas por los patrones de viento típico de verano, que para Madrid se caracterizan por vientos de componente suroeste que van desde 3 a 0 m/s. las simulaciones fueron realizadas para unas condiciones climáticas de referencia de 3, 2, 1 y 0 m/s a nivel superior del cañón urbano, como condición de contorno para el análisis. Los resultados calculados a 1,4 metros por encima del nivel del suelo, en el espacio habitado, mostraron que el efecto de la cubierta ajardinada era menor en condiciones de contorno con velocidades de viento más altas aunque en ningún caso el efecto de la cubierta verde sobre la temperatura del aire superó reducciones de temperatura de aire superiores a 1 º C. La humedad relativa no presentó variaciones significativas al comparar los diferentes escenarios. Las simulaciones realizadas para vientos con velocidad baja, entre 0 y 1 m/s mostraron que por debajo de 0.5 m/s la turbulencia del modelo aumentó drásticamente y se convirtió en el modelo inestable e incapaz de producir resultados fiables. Esto es debido al modelo de turbulencia en el software que no es válido para velocidades de viento bajas, lo que limita la capacidad de ENVI-met 4 para realizar simulaciones en estas condiciones de viento y es una de las principales conclusiones de este análisis en cuanto a la herramienta de simulación. También se comprobó el efecto de las densidades de la densidad de hoja (LAD) de los componentes vegetales en el modelo en la capa de aire inmediatamente superior a la cubierta, a 0,5 m sobre este nivel. Se compararon tres alternativas de densidad de hoja con la cubierta de baldosa de hormigón: el techo verde con LAD 0.3 (hierba típica o sedum), LAD 1.5 (plantas mixtas típicas) y LAD 2.5 (masa del árbol). Los resultados mostraron diferencias de temperatura muy relevante entre las diferentes alternativas de LAD analizadas. Los resultados muestran variaciones de temperatura que oscilan entre 3 y 5 º C al comparar el estándar de la azotea concreta con albedo 0, 3 con el techo con vegetación y vegetación densa, mostrando la importancia del LAD en la cuantificación de los efectos de las cubiertas vegetales en microclima circundante, lo que coincide con los datos reportados en la literatura existente y con los estudios empíricos analizados. Los resultados de los análisis teóricos han llegado a las siguientes conclusiones iniciales relacionadas con la herramienta de simulación y los resultados del modelo: En relación con la herramienta ENVI-met, se han observado limitaciones para el análisis. En primer lugar, la estructura rígida de la geometría, las bases de datos y el tamaño de la cuadrícula, limitan la escala y resolución de los análisis no permitiendo el desarrollo de grandes zonas urbanas. Por otro lado la estructura de ENVI-met permite el desarrollo de este tipo de simulación tan complejo dentro de tiempos razonables de cálculo y requerimientos computacionales convencionales. Otra limitación es el modelo de turbulencia del software, que no modela correctamente velocidades de viento bajas (entre 0 y 1 m/s), por debajo de 0,5 m/s el modelo da errores y no es estable, los resultados a estas velocidades no son fiables porque las turbulencias generadas por el modelo hacen imposible la extracción de patrones claros de viento y temperatura que permitan la comparación entre los escenarios de cubierta de hormigón y ajardinada. Además de las limitaciones anteriores, las bases de datos y parámetros de entrada en la versión pública del software están limitados y la complejidad de generar nuevos sistemas adaptándolos al edificio o modelo urbano que se quiera reproducir no es factible salvo en la versión profesional del software. Aparte de las limitaciones anteriores, los patrones de viento y perfiles de temperatura generados por ENVI-met concuerdan con análisis previos en los que se identificaban patrones de variación de viento y temperaturas en cañones urbanos con patrones de viento, relación de aspecto y dimensiones similares a los analizados en esta investigación. Por lo tanto, el software ha demostrado una buena capacidad para reproducir los patrones de viento en los cañones de la calle y capturar el efecto de enfriamiento producido por la cubierta verde en el cañón. En relación con el modelo, el resultado revela la influencia del viento, la radiación y el LAD en la temperatura del aire en cañones urbanos con relación de aspecto comprendida entre 0,5 y 1. Siendo el efecto de la cubierta verde más notable en cañones urbanos sombreados con relación de aspecto 1 y velocidades de viento en el nivel de “canopy” (por encima de la cubierta) de 1 m/s. En ningún caso las reducciones en la temperatura del aire excedieron 1 º C, y las variaciones en la humedad relativa no excedieron 1% entre los escenarios estudiados. Una vez que se han identificado los parámetros relevantes, que fueron principalmente la velocidad del viento y el LAD, se realizó un análisis experimental para comprobar los resultados obtenidos por el modelo. Para éste propósito se identificó una cubierta ajardinada de grandes dimensiones capaz de representar la escala urbana que es el objeto del estudio. El edificio usado para este fin fue el parking de la terminal 4 del aeropuerto internacional de Madrid. Aunque esto no es un área urbana estándar, la escala y la configuración del espacio alrededor del edificio fueron considerados aceptables para el análisis por su similitud con el contexto urbano objeto de estudio. El edificio tiene 800 x 200 m, y una altura 15 m. Está rodeado de vías de acceso pavimentadas con aceras conformando un cañón urbano limitado por el edificio del parking, la calle y el edificio de la terminal T4. El aparcamiento está cerrado con fachadas que configuran un espacio urbano de tipo cañón, con una relación de aspecto menor que 0,5. Esta geometría presenta patrones de viento y velocidad dentro del cañón que difieren ligeramente de los generados en el estudio teórico y se acercan más a los valores a nivel de canopo sobre la cubierta del edificio, pero que no han afectado a la tendencia general de los resultados obtenidos. El edificio cuenta con la cubierta ajardinada más grande en Europa, 12 Ha cubiertas por con una mezcla de hierbas y sedum y con un valor estimado de LAD de 1,5. Los edificios están rodeados por áreas plantadas en las aceras y árboles de sombra en las fachadas del edificio principal. El efecto de la cubierta ajardinada se evaluó mediante el control de temperaturas y humedad relativa en el cañón en un día típico de verano. La selección del día se hizo teniendo en cuenta las predicciones meteorológicas para que fuesen lo más semejantes a las condiciones óptimas para capturar el efecto de la cubierta vegetal sobre el microclima urbano identificadas en el modelo teórico. El 09 de julio de 2014 fue seleccionado para la campaña de medición porque las predicciones mostraban 1 m/s velocidad del viento y cielos despejados, condiciones muy similares a las condiciones climáticas bajo las que el efecto de la cubierta ajardinada era más notorio en el modelo teórico. Las mediciones se registraron cada hora entre las 9:00 y las 19:00 en 09 de julio de 2014. Temperatura, humedad relativa y velocidad del viento se registraron en 5 niveles diferentes, a 1.5, 4.5, 7.5, 11.5 y 16 m por encima del suelo y a 0,5 m de distancia de la fachada del edificio. Las mediciones fueron tomadas en tres escenarios diferentes, con exposición soleada, exposición la sombra y exposición influenciada por los árboles cercanos y suelo húmedo. Temperatura, humedad relativa y velocidad del viento se registraron con un equipo TESTO 410-2 con una resolución de 0,1 ºC para temperatura, 0,1 m/s en la velocidad del viento y el 0,1% de humedad relativa. Se registraron las temperaturas de la superficie de los edificios circundantes para evaluar su efecto sobre los registros usando una cámara infrarroja FLIR E4, con resolución de temperatura 0,15ºC. Distancia mínima a la superficie de 0,5 m y rango de las mediciones de Tª de - 20 º C y 250 º C. Los perfiles de temperatura extraídos de la medición in situ mostraron la influencia de la exposición solar en las variaciones de temperatura a lo largo del día, así como la influencia del calor irradiado por las superficies que habían sido expuestas a la radiación solar así como la influencia de las áreas de jardín alrededor del edificio. Después de que las medidas fueran tomadas, se llevaron a cabo las siguientes simulaciones para evaluar el impacto de la cubierta ajardinada en el microclima: a. estándar de la azotea: edificio T4 asumiendo un techo de tejas de hormigón con albedo 0.3. b. b. cubierta vegetal : T4 edificio asumiendo una extensa cubierta verde con valor bajo del LAD (0.5)-techo de sedum simple. c. c. cubierta vegetal: T4 edificio asumiendo una extensa cubierta verde con alta joven valor 1.5-mezcla de plantas d. d. cubierta ajardinada más vegetación nivel calle: el edificio T4 con LAD 1.5, incluyendo los árboles existentes a nivel de calle. Este escenario representa las condiciones actuales del edificio medido. El viento de referencia a nivel de cubierta se fijó en 1 m/s, coincidente con el registro de velocidad de viento en ese nivel durante la campaña de medición. Esta velocidad del viento se mantuvo constante durante toda la campaña. Bajo las condiciones anteriores, los resultados de los modelos muestran un efecto moderado de azoteas verdes en el microclima circundante que van desde 1 º a 2 º C, pero una contribución mayor cuando se combina con vegetación a nivel peatonal. En este caso las reducciones de temperatura alcanzan hasta 4 ºC. La humedad relativa sin embargo, no presenta apenas variación entre los escenarios con y sin cubierta ajardinada. Las temperaturas medidas in situ se compararon con resultados del modelo, mostrando una gran similitud en los perfiles definidos en ambos casos. Esto demuestra la buena capacidad de ENVI-met para reproducir el efecto de la cubierta ajardinada sobre el microclima y por tanto para el fin de esta investigación. Las diferencias más grandes se registraron en las áreas cercanas a las zonas superiores de las fachadas que estaban más expuestas a la radiación del sol y también el nivel del suelo, por la influencia de los pavimentos. Estas diferencias se pudieron causar por las características de los cerramientos en el modelo que estaban limitados por los datos disponibles en la base de datos de software, y que se diferencian con los del edificio real. Una observación importante derivada de este estudio es la contribución del suelo húmedo en el efecto de la cubierta ajardinada en la temperatura del aire. En el escenario de la cubierta ajardinada con los arboles existentes a pie de calle, el efecto del suelo húmedo contribuye a aumentar las reducciones de temperatura hasta 4.5ºC, potenciando el efecto combinado de la cubierta ajardinada y la vegetación a pie de calle. Se realizó un análisis final después de extraer el perfil horario de temperaturas en el cañón urbano influenciado por el efecto de las cubiertas ajardinadas y los árboles. Con esos perfiles modificados de temperatura y humedad se desarrolló un modelo energético en el edificio asumiendo un edificio cerrado y climatizado, con uso de oficinas, una temperatura de consigna de acuerdo al RITE de 26 ºC, y con los sistemas por defecto que establece el software para el cálculo de la demanda energética y que responden a ASHRAE 90.1. El software seleccionado para la simulación fue Design Builder, por su capacidad para generar simulaciones horarias y por ser una de las herramientas de simulación energética más reconocidas en el mercado. Los perfiles modificados de temperatura y humedad se insertaron en el año climático tipo y se condujo la simulación horaria para el día definido, el 9 de Julio. Para la simulación se dejaron por defecto los valores de conductancia térmica de los cerramientos y la eficiencia de los equipos de acuerdo a los valores que fija el estándar ASHRAE para la zona climática de Madrid, que es la 4. El resultado mostraba reducciones en el consumo de un día pico de hasta un 14% de reducción en las horas punta. La principal conclusión de éste estudio es la confirmación del potencial de las cubiertas ajardinadas como una estrategia para reducir la temperatura del aire y consumo de energía en los edificios, aunque este efecto puede ser limitado por la influencia de los vientos, la radiación y la especie seleccionada para el ajardinamiento, en especial de su LAD. Así mismo, en combinación con los bosques urbanos su efecto se potencia e incluso más si hay pavimentos húmedos o suelos porosos incluidos en la morfología del cañón urbano, convirtiéndose en una estrategia potencial para adaptar los ecosistemas urbanos el efecto aumento de temperatura derivado del cambio climático. En cuanto a la herramienta, ENVI-met se considera una buena opción para éste tipo de análisis dada su capacidad para reproducir de un modo muy cercano a la realidad el efecto de las cubiertas. Aparte de ser una herramienta validada en estudios anteriores, en el caso experimental se ha comprobado por medio de la comparación de las mediciones con los resultados del modelo. A su vez, los resultados y patrones de vientos generados en los cañones urbanos coinciden con otros estudios similares, concluyendo por tanto que es un software adecuado para el objeto de esta tesis doctoral. Como líneas de investigación futura, sería necesario entender el efecto de la cubierta ajardinada en el microclima urbano en diferentes zonas climáticas, así como un mayor estudio de otras variables que no se han observado en este análisis, como la temperatura media radiante y los indicadores de confort. Así mismo, la evaluación de otros parámetros que afectan el microclima urbano tales como variables geométricas y propiedades superficiales debería ser analizada en profundidad para tener un resultado que cubra todas las variables que afectan el microclima en el cañón urbano. ABSTRACT Climate Change is posing an urgency in the development of strategies able not only to mitigate but also adapt to the effects that this global problem is evidencing around the world. Heat waves, flooding and severe draughts increase the vulnerability of population, and this is especially critical in urban settlements. This has been extensively studied over the past decades, addressed from different perspectives and ranging from the regional heat island analysis to the building scale. Its understanding requires physical and dimensional analysis of this broad phenomenon and a deep analysis of the factors and the strategies which can offset it. In the search of solutions to this problem, green infrastructure elements such as green roofs, walls and urban forests arise as strategies able provide multiple regulating ecosystem services to the urban environment able to cope with climate change effects. This includes storm water management, heat island effect control, and improvement of air and water quality. Over the last decade, multiple studies have been developed to evaluate and quantify the ecosystem services provided by green roofs, however, specific regulating services addressing urban microclimate and their impact on the urban dwellers have not been widely quantified. This research tries to contribute to fill this gap and analyzes the effects of green roofs and urban forests on urban microclimate at pedestrian level, quantifying its potential for regulating ambient temperature in hot season in Mediterranean –continental climates. The study is divided into a sequence of analysis where the critical factors affecting the performance of the green roof system on the microclimate are identified and the effects of the green roof is tested in a real case study. The first step has been the definition of the object of study, through the analysis and review of theoretical and empirical papers that investigate the effects of covers landscaped in the built environment, in the context of its use as a tool for adaptation and mitigation of the impact of climate change on cities and urban development. This literature review, reveals the great potential of the plant systems as a tool for passive design capable of improving the climatic and microclimatic conditions in the cities, as well as its positive impact on the energy performance of buildings, but also the need for further analysis at the street scale where climate, urban surfaces and materials, and vegetation converge. This analysis requires a methodology where the thermal buildings response, the variations in the patterns of wind and the interaction of the vegetation are integrated, so a quantitative analysis can help to define the most effective strategies to achieve liveable urban spaces and collaterally, , the improvement of the surrounding buildings energy performance. In this specific scale research is needed and should be customized to every climate, urban condition and nature based strategy. In this context, the main objective for this research was the quantitative assessment of the Green roof impact on the urban microclimate at a neighbourhood scale in summer conditions in Mediterranean- continental climates. For the achievement of this main objective, the following secondary objectives have been set: • Identify the numerical models and calculation tools able to capture the effect of the roof garden on the microclimate. • Identify the enhancing or limiting parameter affecting this effect. • Quantification of the impact of the microclimate created on the energy consumption of buildings surrounding the street canyon analysed. The main hypothesis behind this research and where the above objectives are funded on is as follows: "An extensive roof installed in medium height buildings favours the establishment of microclimates at the pedestrian level and reduces the temperatures in the urban environment where they are located." For the purpose of verifying the above hypothesis and achieving the proposed objectives the following methodology has been followed: - Definition of hypothesis and objectives - Definition of the scope and limitations - Theoretical analysis of parameters affecting gren roof performance - Experimental analysis; - Energy modelling analyisis - Conclusions and future lines of work The search for suitable tools and models for meeting the objectives of this analysis has led to ENVI-met v4 as the most suitable software for this research. ENVI met is a three-dimensional micro-climate model designed to simulate the surface-plant-air interactions in urban environments. Based in the fundamental equations representing, mass, energy and momentum conservation, the software has the capacity of representing the complex phenomena characterizing the microclimate in urban canyons, overcoming the challenge posed by the computing requirements of a full calculus based on finite elements done via traditional computational fluid dynamics tools. Once the analysis tool has been defined, a first set of analysis has been developed to identify the main parameters affecting the green roof influence on the microclimate. In this analysis, two different scenarios are compared. A neighborhood with standard concrete tile roof and the same configuration substituting the concrete tile by an extensive green roof. Once the scenarios have been modeled, different iterations have been run to identify the influence of different wind patterns, solar exposure and roof vegetation type on the microclimate, since those are the most relevant variables affecting urban microclimates. These analysis have been run to check the conditions under which the effects of green roofs get significance. Since ENVI-met V4 is a predictive software, the first step has been the definition of the initial weather conditions which are then used as starting point by the software, which generates its own daily temperature and humidity profile based on the location of the building, geometry, vegetation and the surfaces physical characteristics. The base geometry used for this first analysis has been based on a typical urban layout structure located in Madrid, an orthogonal net with the main streets oriented East-West to ease the analysis of solar radiation in the different points of the model. This layout represents a typical urban neighborhood, with street canyons keeping an aspect ratio between 0.5 and 1 and high sky view factor to ensure correct sun access to the streets and buildings and work with typical wind flow patterns. Finally, the roof vegetation has been defined in terms of foliage density known as Leaf Area Density (LAD) and defined as the total one-sided leaf area per unit of layer volume. This index is the most relevant vegetation characteristic for the purpose of calculating the effect of vegetation on wind and solar radiation as well as the energy consumed during its metabolic processes. The building as usual (BAU) configuring the urban layout has been defined with standard concrete tile roofs, considering 0.3 albedo. Walls have been set with albedo 0.2 (typical brick wall construction) and adiabatic to avoid interference caused by thermal interchanges with the building indoor environment. For the proposed case, the same geometry and building characteristics have been kept. The only change is the roof surface coverage. The gravel on the roof has been changed with an extensive green roof covered with drought tolerant plants, typical in Madrid climate, and characterized by their LAD. The different scenarios analysed are based in the variation of the wind speed and the LAD of the roof. The results have been recorded under different sun exposure conditions. Simulations were run for the typical summer wind patterns, that for Madrid are characterized by South-west winds ranging from 3 to 0 m/s. Simulations were run for 3, 2, 1 and 0 m/s at urban canopy level. Results taken at 1.4 m above the ground showed that the green roof effect was lower with higher wind speeds and in any case the effect of the green roof on the air temperatures exceeded air temperature reductions higher than 1ºC. Relative humidity presented no variations when comparing the different scenarios. For the analysis at 0m/s, ENVI-met generated error and no results were obtained. Different simulations showed that under 0.5 m/s turbulence increased dramatically and the model became unstable and unable to produce reliable results. This is due to the turbulence model embedded in the software which is not valid for low wind speeds (below 1 m/s). The effect of the different foliage densities was also tested in the model. Three different alternatives were compared against the concrete roof: green roof with LAD 0.3 ( typical grass or sedum), 1.5 (typical mixed plants) and 2.5 (tree mass). The results showed very relevant temperature differences between the different LAD alternatives analyzed. Results show temperature variations ranging between 3 and 5 ºC when comparing the standard concrete roof with albedo 0, 3 with the vegetated roof and vegetated mass, showing the relevance of the LAD on the effects of green roofs on microclimate. This matches the data reported in existing literature and empirical studies and confirms the relevance of the LAD in the roof effect on the surrounding microclimate. The results of the theoretical analysis have reached the following initial conclusions related to both, the simulation tool and the model results: • In relation to the tool ENVI-met, some limitations for the analysis have been observed. In first place, the rigid structure of the geometry, the data bases and the grid size, limit the scale and resolution of the analysis not allowing the development of large urban areas. On the other hand the ENVI-met structure enables the development of this type of complex simulation within reasonable times and computational requirements for the purpose of this analysis. Additionally, the model is unable to run simulations at wind speeds lower than 0.5 m/s, and even at this speed, the results are not reliable because the turbulences generated by the model that made impossible to extract clear temperature differences between the concrete and green roof scenarios. Besides the above limitations, the wind patterns and temperature profiles generated by ENVImet are in agreement with previous analysis identifying wind patterns in urban canyons with similar characteristics and aspect ratio. Therefore the software has shown a good capacity for reproducing the wind effects in the street canyons and seems to capture the cooling effect produced by the green roof. • In relation to the model, the results reveals the influence of wind, radiation and LAD on air temperature in urban canyons with aspect ratio comprised between 0.5 and 1. Being the effect of the green roof more noticeable in shaded urban canyons with aspect ratio 1 and wind speeds of 1 m/s. In no case the reductions in air temperature exceeded 1ºC. Once the relevant parameters have been identified, mainly wind speed and LAD, an experimental analysis was conducted to test the results obtained by the model. For this purpose a large green roof was identified, able to represent the urban scale which is the object of the studio. The building identified for this purpose was the terminal 4, parking building of the international Madrid Airport. Even though this is not a standard urban area, the scale and configuration of the space around the building were deemed as acceptable for the analysis. The building is an 800x200 m, 15 m height parking building, surrounded by access paved paths and the terminal building. The parking is enclosed with facades that configure an urban canyon-like space, although the aspect ratio is lower than 0.5 and the wind patterns might differ from the theoretical model run. The building features the largest green roof in Europe, a 12 Ha extensive green roof populated with a mix of herbs and sedum with a LAD of 1.5. The buildings are surrounded by planted areas at the sidewalk and trees shading the main building facades. Green roof performance was evaluated by monitoring temperatures and relative humidity in the canyon in a typical summer day. The day selection was done taking into account meteorological predictions so the weather conditions on the measurement day were as close as possible as the optimal conditions identified in terms of green roof effects on the urban canyon. July 9th 2014 was selected for the measurement campaign because the predictions showed 1 m/s wind speed and sunny sky, which were very similar to the weather conditions where the effect of the green roof was most noticeable in the theory model. Measurements were registered hourly from 9:00am to 19:00 on July 9th 2014. Temperature, relative humidity and wind speed were recorded at 5 different levels, at 1.5, 4.5, 7.5, 11.5 and 16 m above ground and at 0.5 m distance from the building façade. Measurements were taken in three different scenarios, sunny exposure, shaded exposure, and shaded exposure influenced by nearby trees and moist soil. Temperature, relative humidity and wind speed were registered using a TESTO 410-2 anemometer, with 0.1ºC resolution for temperature, 0.1 m/s resolution for wind speed and 0.1 % for relative humidity. Surface temperatures were registered using an infrared camera FLIR E4, with temperature resolution 0.15ºC. Minimal distance to surface of 0.5 m and Tª measurements range from -20ºC and 250ºC. The temperature profiles measured on the site showed the influence of solar exposure on the temperature variations along the day, as well as the influence of the heat irradiated by the building surfaces which had been exposed to the sun radiation and those influenced by the moist soft areas around the building. After the measurements were taken, the following simulations were conducted to evaluate the impact of the green roof on the microclimate: a. Standard roof: T4 building assuming a concrete tile roof with albedo 0.3. b. Green roof: T4 building assuming an extensive green roof with low LAD value (0.5)-Simple Sedum roof. c. Green roof: T4 building assuming an extensive green roof with high LAD value 1.5- Lucerne and grasses d. Green roof plus street level vegetation: T4 Building, LAD 1.5 (Lucerne), including the existing trees at street level. This scenario represents the current conditions of the building. The urban canopy wind was set as 1 m/s, the wind speed register at that level during the measurement campaign. This wind speed remained constant over the whole campaign. Under the above conditions, the results of the models show a moderate effect of green roofs on the surrounding microclimate ranging from 1ºC to 2ºC, but a larger contribution when combining it with vegetation at pedestrian level, where 4ºC temperature reductions are reached. Relative humidity remained constant. Measured temperatures and relative humidity were compared to model results, showing a close match in the profiles defined in both cases and the good capacity of ENVI met to capture the impact of the green roof in this analysis. The largest differences were registered in the areas close to the top areas of the facades which were more exposed to sun radiation and also near to the soil level. These differences might be caused by differences between the materials properties included in the model (which were limited by the data available in the software database) and those in the real building. An important observation derived from this study is the contribution of moist soil to the green roof effect on air temperatures. In the green roof scenario with surrounding trees, the effect of the moist soil contributes to raise the temperature reductions at 4.5ºC. A final analysis was conducted after extracting the hourly temperature profile in the street canyon influenced by the effect of green roofs and trees. An energy model was run on the building assuming it was a conventional enclosed building. Energy demand reductions were registered in the building reaching up to 14% reductions at the peak hour. The main conclusion of this study is the potential of the green roofs as a strategy for reducing air temperatures and energy consumption in the buildings, although this effect can be limited by the influence of high speed winds. This effect can be enhanced its combination with urban forests and even more if soft moist pavements are included in the urban canyon morphology, becoming a potential strategy for adapting urban ecosystems to the increasing temperature effect derived from climate change.
Resumo:
La ubicación marginal y el aislamiento de los Parques Urbanos implican infrautilización y deterioro de los mismos. Su interconexión mediante una red verde peatonal con limitaciones al tráfico rodado, supone una puesta en valor de todo el sistema de espacios libres y zonas verdes de la ciudad y un importante incentivo para desviar determinados flujos rodados a otras vías cercanas, rescatando así, espacios urbanos a favor del peatón. Esta conexión ayuda a minimizar la fragmentación del espacio urbano, generando nexos de unión, que articulan y estructuran la ciudad. En esta investigación se describe una metodología para localizar y seleccionar conectores entre distintos Parques Urbanos, evaluando su funcionalidad, seguridad, confort y atractivo. Como caso de estudio, se proponen las conexiones entre los Parques Públicos de una entidad determinada, situados en la ciudad de Madrid. Esta metodología es elástica, universal, y dada su sencillez, aplicable por personas no especializadas; estas características la hacen especialmente valiosa, para apoyar la toma de decisiones en los instrumentos de Ordenación del Territorio y en el desarrollo de Planes Específicos encaminados a la mejora de la calidad ambiental y al aumento de la potencialidad peatonal de la ciudad. ABSTRACT The marginal location and the solitary distribution of City Parks are factors that expose these “City Lungs” to be underused and damaged. The City Parks chained by a green pedestrian web with a minimized relevance for engine vehicles, generates an important enhancement for open spaces and green areas of the City, and a crucial incentive for altering the course of vehicle transportation from particular areas to proximate avenues and arteries, resulting in urban spaces being exclusively for pedestrians. This network helps to minimize the fragmentation of the urban space generating nodes of connection that provide a structure to the city. In this investigation a procedure is described for the purpose of identifying and prioritizing green connectors amongst the City Parks, evaluating the functionality, security, comfort, and attractions. For this research paper, it is proposed to establish a green web, which links up the main City Parks of Madrid. This methodology is elastic, universal, and due to its simplicity, can be applicable for non-specialized people of the field: these features make this urban concept a very estimable and valued idea that can be taken into consideration for future urban planning and for the development of specific plans with the object of improving the quality of the environment and lead to an increase of the pedestrian potential within the city.
Resumo:
El presente trabajo de investigación determina las características de la cerámica que más eficientemente se comporta a evaporación y a enfriamiento. Con el objeto de ser empleado como material integrado en la envolvente de los edificios para reducir su carga de refrigeración. La cerámica es un buen material para ser empleado para la refrigeración por evaporación. Es un sólido poroso inerte que, tras ser sometido a cocción a temperaturas por encima de los 900ºC, resulta uno de los materiales que mejor se comportan como contenedor de agua en su red capilar para, posteriormente, ir liberándola por evaporación al mismo tiempo que se enfría su superficie. La metodología general de investigación, se divide en tres etapas: Búsqueda y análisis del estado de la técnica y de la investigación. Estudio teórico de la eficacia del enfriamiento evaporativo como estrategia de enfriamiento pasivo en la arquitectura. Etapa experimental, desarrollada en tres fases: una primera de definición de los parámetros determinantes del Enfriamiento Evaporativo en piezas cerámicas, una segunda de selección cerámica y diseño de ensayos experimentales y una tercera de caracterización de la cerámica bajo criterios de evaporación y de enfriamiento. El recorrido por el estado de la cuestión ha identificado las aplicaciones tecnológicas y las investigaciones científicas que emplean el Enfriamiento Evaporativo con piezas cerámicas como técnica de enfriamiento. Como resultado se ha obtenido una tabla de clasificación de sistemas de enfriamiento evaporativo y se ha constatado que el conjunto de las aplicaciones están centradas en el diseño de piezas o sistemas pero que, sin embargo, no existe una definición de las características de la cerámica para su empleo como material de enfriamiento por evaporación. El estudio teórico de la eficacia del empleo del enfriamiento evaporativo como estrategia de enfriamiento pasivo en la arquitectura se ha realizado mediante cálculos de porcentaje de ampliación de horas en confort con empleo de técnicas de enfriamiento evaporativo directo e indirecto (EED y EEI). Como resultado se obtienen unos mapas para el ámbito español de potencial de aplicación del EED y EEI. Los resultados permiten afirmar que mediante EE se puede llegar a confort en prácticamente la totalidad de las horas de los días más cálidos del año en muchas localidades. La metodología experimental se ha desarrollado en tres fases. En la fase inicial, se han definido los parámetros determinantes del enfriamiento evaporativo en un medio cerámico mediante ensayos experimentales de capacidad de evaporación y de caracterización. Se realizaron un total de 12 ensayos. Se determinó que el material cerámico tiene una gran influencia en la capacidad de evaporación y enfriamiento en las piezas cerámicas, apoyando la hipótesis inicial y la necesidad de caracterizar el material. La primera fase empírica se centró en la selección cerámica y el diseño de los ensayos experimentales de comportamiento hídrico. Se seleccionaron muestras de 5 tipos de cerámica. Se realizaron 4 tipos de ensayos de caracterización y 6 tipos de ensayos experimentales de comportamiento hídrico (total 123 muestras ensayadas). Los resultados obtenidos son de dos tipos, por un lado, se determinó cuál es el tipo de cerámica que más eficientemente se comporta a EE y, por otro, se rediseñaron los ensayos de la última fase experimental. Para la segunda fase experimental se seleccionaron cerámicas de fabricación manual abarcando el mayor número de localidades del ámbito español. Se realizaron ensayos de caracterización de 7 tipos y ensayos de comportamiento hídrico de 5 tipos (total 197 muestras ensayadas). Los resultados de caracterización han permitido aportar unos rangos de las características de la cerámica que más eficientemente se comporta en los ensayos de comportamiento hídrico. Al final de la investigación se ha caracterizado el material cerámico aportando características acerca de su porosidad, capacidad de absorción, color, rugosidad y mineralogía. Así como datos de referencia de su comportamiento hídrico. Además se ha desarrollado una metodología de ensayo específica que permite evaluar la capacidad de enfriamiento eficiente de una pieza cerámica. ABSTRACT The purpose of this research is to determine the characteristics of ceramic materials having the most efficient performance in terms of evaporation and cooling, so that they can be integrated in building envelopes to reduce cooling loads. Ceramics are suitable materials for cooling through passive evaporation. After being fired at temperatures over 900 °C (1,652 °F), the capillary network of this inert porous medium turns to be excellent to retain water, which is progressively liberated by evaporation while the material surface gets colder. Research methodology has involved the following steps: Search and analysis on the state of the art in technology and research. Theoretical study on the efficiency of evaporation as passive cooling strategies in buildings. Experimental stage developed in three phases, namely: definition of parameters determining evaporative cooling in ceramic elements; ceramic selection and design of experimental tests; characterization of ceramic materials under evaporation and cooling criteria. Search and analysis on the state of the art in this field have been useful to identify technology applications and scientific research where ceramics are employed for evaporative cooling. The resulting table shows that applications are wholly focused on the design of pieces and systems. Nonetheless, there is lack of definition of material characteristics in this scope. The theoretical study on efficiency of the passive strategy applied to buildings has been realized by calculation of the percentage increase in comfort hours through direct/indirect evaporative cooling techniques (DEC/IEC). The mapping of their potential application in Spain clearly shows that comfort conditions can be reached in almost all the hours of the hottest days in many towns. In the initial phase of the experimental stage, parameters determining evaporative cooling in ceramic media have been defined. For this purpose, characterization tests and evaporation and cooling rates experiments have been carried out; the number of samples tested amounted to 12. It has been concluded that material characteristics have great influence on these rates, which supports the initial hypothesis and the need for their characterization. The first empirical phase has focused on ceramic selection and design of water behaviour experimental methods. The samples covered five different kinds of ceramic materials. Four different characterization tests and six different water behaviour experiments were carried out; the number of samples tested amounted to 123. The experimental testing procedures served to determine the most efficient types of ceramic materials in terms of evaporative cooling efficiency and, at the same time, made it necessary to change the original designed experimental test for the last phase. In the second phase, a number of varied hand-made ceramic tiles have been selected. Seven different characterization tests and five different water behaviour tests were carried out; the number of samples amounted to 197. The results of characterization served to establish a range of features in ceramic materials according to their efficiency in water behaviour experiments. Finally, ceramic materials have been characterized according to porosity, water absorption, colour, surface roughness and mineralogy. Also, reference data regarding water behaviour have been included. Moreover, an innovative and specific experimental test to evaluate cooling efficiency of ceramic tiles has been developed.
Resumo:
El presente trabajo, trata del ahorro de energía en la edificación y en el urbanismo. Las premisas en este caso, son un contexto normativo europeo y nacional muy exigentes y encaminados de manera decidida hacia edificios cada vez más eficientes y económicos. Se centra el estudio en las decisiones iniciales que se adoptan sobre las condiciones de ocupación de la parcela urbana, las tipologías edificatorias más adecuadas, su morfología y escala y las consecuencias que tienen para el comportamiento energético final, tanto en términos objetivos como normativos. Se trata de cuantificar que suponen estas decisiones en términos de ahorro energético. Todo el análisis se realiza para un contexto climático concreto, el de la ciudad de Madrid. Para los análisis de las diferentes condiciones de implantación objeto del estudio, se han empleado unas herramientas informáticas singulares. Se trata de los programas de evaluación de la demanda y certificación energética de edificios, que el gobierno español pone a disposición de los usuarios de manera gratuita. Estas, son aplicaciones pensadas para la escala del edificio y/o parte de él, pero que con la metodología y simplificaciones que en el trabajo se detallan, pueden ser empleadas en la escala media de intervención urbana, tanto en nueva implantación como en rehabilitación. Hay que tener en cuenta que son estas aplicaciones las que se utilizarán en la mayoría de los casos como instrumento de evaluación y calificación del comportamiento energético de cada una de las unidades. Las tipologías objeto del estudio son: - Vivienda unifamiliar: aislada, pareada y adosada en hilera. - Bloque abierto - Bloque en H - Bloque en cruz - Torre - Manzana cerrada El contenido principal del trabajo se centra en el análisis individual de cada tipología y de su agrupación teórica sobre lo que podíamos llamar "unidad urbana", una manzana tipo de 10.000 m2, 1 ha. Se opta por esta unidad por tratarse de una superficie urbana lo suficientemente amplia para caracterizar la agrupación de las diferentes tipologías estudiadas y por adaptarse a las capacidades de las herramientas informáticas que se han utilizado. Se han analizado diferentes opciones tipológicas de ocupación, manteniendo constantes en todas las soluciones estudiadas, los siguientes parámetros: • el clima (Madrid), • la edificabilidad (en todas menos una en la que el modelo no permite alcanzar la edificabilidad de referencia), • la pureza formal del modelo, evitando los juegos compositivos de retranqueos y salientes de la envolvente que distorsionen el comportamiento de la volumetría primaria, • las soluciones constructivas de la envolvente y particiones interiores de los edificios, • las proporciones de huecos en la envolvente, • las soluciones de sus carpinterías y vidrios • y todas las condiciones operacionales que aplica el programa de simulación. Esta tesis, es un estudio analítico y evaluado, del comportamiento de cada uno de los tipos, su forma y posicionamiento en el espacio. Cada uno de los modelos se simula de manera individual y agrupados, con el fin de conseguir colmatar la edificabilidad de referencia sobre la parcela urbana de 1 ha. Todos los resultados se estudian de forma independiente y los resultados se expresan en diferentes tablas y un resumen en fichas individuales por tipos. La conclusión principal del trabajo es que la tipología elegida como contenedor residencial urbano determina en su elección acertada la primera medida de ahorro energético y reducción de emisiones cuantificables en más del 50% entre las tipologías más favorables y las más desfavorables. Una segunda parte del trabajo de investigación, consiste en la aplicación de esta metodología de simulación y empleando las mismas herramientas, en el estudio de casos reales en la comunidad de Madrid (principalmente en la ciudad de Madrid). El objetivo es validar el procedimiento y dichas herramientas, también para el caso de evaluación de tejidos urbanos consolidados. Como caso singular de estudio de rehabilitación urbana, se analizan las intervenciones de rehabilitación partiendo de criterios acústicos y las oportunidades que plantearía la inclusión de criterios térmicos aprovechando la sinergia entre ambas demandas, la de confort acústico y térmico. ABSTRACT This PhD work is about saving energy in buildings and urban planning. The premises in this case are a very demanding European and national policy, aimed decisively towards efficient and economic buildings. The study focuses on the initial decisions taken on the conditions of occupation of urban land, the most suitable building types, their morphology and scale and the implications for the final energy performance, always considering policy objectives. This essay tries to quantify how important this decisions are in energy savings terms. All analysis are performed for a particular climatic context, the city of Madrid. For the analysis of different implantation conditions under study, we have used a unique software tool. This software, a free tool available online, quantifies demand assessment and energy certification of buildings. It is designed for building scale and / or part of it. With the methodology and simplifications detailed in this paper, the software can be used in medium scale urban intervention. There are different types under study such as, isolated house, semi-detached, terraces row, open block, h block, cross block, tower, etc. The main content of the work focuses on the individual analysis of each type and its theoretical group, named urban unit group. This unit is chosen because it is an urban area large enough to characterize the grouping of the different types studied. It is also possible to simulate with the software tools. Different options of typological occupation have been analyzed taking in consideration the next parameters: climate, floor area, model formal purity, building envelope solutions and interior partitions of buildings, the proportions of voids in the facades. This thesis is an analytical and evaluated study of the behavior of each types, form and position in space. Each of the models is simulated individually and grouped, in order to get the reference buildable urban plot of 1 ha. All results are studied independently and the results are expressed in different tables and a summary in individual files by type. The main conclusion of the study is that the type chosen as urban residential container you choose determines the first step in successful energy savings and quantifiable reduction of emissions by more than 50% in the most favorable and the most unfavorable types. A second part of the research, is the application of this methodology and simulation using the same tools in the study of real cases in the community of Madrid (mainly in the city of Madrid). The aim is to validate the procedure and such tools, also for the case of evaluation of consolidated urban fabric. As a unique case study of urban renewal, rehabilitation interventions based on acoustic criteria and opportunities arise thermal criteria including leveraging the synergy between the two demands, acoustic and thermal comfort are analyzed.
Resumo:
Esta tesis trata sobre la construcción modular ligera, dentro del contexto de la eficiencia energética y de cara a los conceptos de nZEB (near Zero Energy Building) y NZEB (Net Zero Energy Building) que se manejan en el ámbito europeo y específicamente dentro del marco regulador de la Directiva 2010/31 UE. En el contexto de la Unión Europea, el sector de la edificación representa el 40% del total del consumo energético del continente. Asumiendo la necesidad de reducir este consumo se han planteado, desde los organismos de dirección europeos, unos objetivos (objetivos 20-20-20) para hacer más eficiente el parque edificatorio. Estos objetivos, que son vinculantes en términos de legislación, comprometen a todos los estados miembros a conseguir la meta de reducción de consumo y emisiones de GEI (Gases de Efecto Invernadero) antes del año 2020. Estos conceptos de construcción modular ligera (CML) y eficiencia energética no suelen estar asociados por el hecho de que este tipo de construcción no suele estar destinada a un uso intensivo y no cuenta con unos cerramientos con niveles de aislamiento de acuerdo a las normativas locales o códigos de edificación de cada país. El objetivo de nZEB o NZEB, e incluso Energy Plus, según sea el caso, necesariamente (y así queda establecido en las normativas), dependerá no sólo de la mejora de los niveles de aislamiento de los edificios, sino también de la implementación de sistemas de generación renovables, independientemente del tipo de sistema constructivo con el que se trabaje e incluso de la tipología edificatoria. Si bien es cierto que los niveles de industrialización de la sociedad tecnológica actual han alcanzado varias de las fases del proceso constructivo - sobre todo en cuanto a elementos compositivos de los edificios- también lo es el hecho de que las cotas de desarrollo conseguidas en el ámbito de la construcción no llegan al nivel de evolución que se puede apreciar en otros campos de las ingenierías como la aeronáutica o la industria del automóvil. Aunque desde finales del siglo pasado existen modelos y proyectos testimoniales de construcción industrializada ligera (CIL) e incluso ya a principios del siglo XX, ejemplos de construcción modular ligera (CML), como la Casa Voisin, la industrialización de la construcción de edificios no ha sido una constante progresiva con un nivel de comercialización equiparable al de la construcción masiva y pesada. Los términos construcción industrializada, construcción prefabricada, construcción modular y construcción ligera, no siempre hacen referencia a lo mismo y no siempre son sinónimos entre sí. Un edificio puede ser prefabricado y no ser modular ni ligero y tal es el caso, por poner un ejemplo, de la construcción con paneles de hormigón prefabricado. Lo que sí es una constante es que en el caso de la construcción modular ligera, la prefabricación y la industrialización, casi siempre vienen implícitas en muchos ejemplos históricos y actuales. Con relación al concepto de eficiencia energética (nZEB o incluso NZEB), el mismo no suele estar ligado a la construcción modular ligera y/o ligera industrializada; más bien se le ve unido a la idea de cerramientos masivos con gran inercia térmica propios de estándares de diseño como el Passivhaus; y aunque comúnmente a la construcción ligera se le asocian otros conceptos que le restan valor (corta vida útil; función y formas limitadas, fuera de todo orden estético; limitación en los niveles de confort, etc.), los avances que se van alcanzando en materia de tecnologías para el aprovechamiento de la energía y sistemas de generación renovables, pueden conseguir revertir estas ideas y unificar el criterio de eficiencia + construcción modular ligera. Prototipos y proyectos académicos– como el concurso Solar Decathlon que se celebra desde el año 2002 promovido por el DOE (Departamento de Energía de los Estados Unidos), y que cuenta con ediciones europeas como las de los años 2010 y 2012, replantean la idea de la construcción industrializada, modular y ligera dentro del contexto de la eficiencia energética, con prototipos de viviendas de ± 60m2, propuestos por las universidades concursantes, y cuyo objetivo es alcanzar y/o desarrollar el concepto de NZEB (Net Zero Energy Building) o edificio de energía cero. Esta opción constructiva no sólo representa durabilidad, seguridad y estética, sino también, rapidez en la fabricación y montaje, además de altas prestaciones energéticas como se ha podido demostrar en las sucesivas ediciones del Solar Decathlon. Este tipo de iniciativas de desarrollo de tecnologías constructivas, no sólo apuntan a la eficiencia energética sino al concepto global de energía neta, Energía plus o cero emisiones de CO2. El nivel de emisiones por la fabricación y puesta en obra de los materiales de construcción depende, en muchos casos, no solo de la propia naturaleza del material, sino también de la cantidad de recursos utilizados para producir una unidad de medida determinada (kg, m3, m2, ml, etc). En este sentido podría utilizarse, en muchos casos, el argumento válido de que a menos peso, y a menos tamaño, menos emisiones globales de gases de efecto invernadero y menos contaminación. Para el trabajo de investigación de esta tesis se han tomado como referencias válidas para estudio, prototipos tanto de CML (Modular 3D) como de CIL (panelizado y elementos 2D), dado que para los fines de análisis de las prestaciones energéticas de los materiales de cerramiento, ambos sistemas son equiparables. Para poder llegar a la conclusión fundamental de este trabajo de tesis doctoral - que consiste en demostrar la viabilidad tecnológica/ industrial que supone la combinación de la eficiencia energética y la construcción modular ligera - se parte del estudio del estado de la técnica ( desde la selección de los materiales y los posibles procesos de industrialización en fábrica, hasta su puesta en obra, funcionamiento y uso, bajo los conceptos de consumo cero, cero emisiones de carbono y plus energético). Además -y con un estado de la técnica que identifica la situación actual- se llevan a cabo pruebas y ensayos con un prototipo a escala natural y células de ensayo, para comprobar el comportamiento de los elementos compositivos de los mismos, frente a unas condicionantes climáticas determinadas. Este tipo de resultados se contrastan con los obtenidos mediante simulaciones informáticas basadas en los mismos parámetros y realizadas en su mayoría mediante métodos simplificados de cálculos, validados por los organismos competentes en materia de eficiencia energética en la edificación en España y de acuerdo a la normativa vigente. ABSTRACT This thesis discusses lightweight modular construction within the context of energy efficiency in nZEB (near Zero Energy Building) and NZEB (Net Zero Energy Building) both used in Europe and, specifically, within the limits of the regulatory framework of the EU Directive 2010/31. In the European Union the building sector represents 40% of the total energy consumption of the continent. Due to the need to reduce this consumption, European decision-making institutions have proposed aims (20-20-20 aims) to render building equipment more efficient. These aims are bound by law and oblige all member States to endeavour to reduce consumption and GEI emissions before the year 2020. Lightweight modular construction concepts and energy efficiency are not generally associated because this type of building is not normally meant for intensive use and does not have closures with insulation levels which fit the local regulations or building codes of each country. The objective of nZEB or NZEB and even Energy Plus, depending on each case, will necessarily be associated (as established in the guidelines) not only with the improvement of insulation levels in buildings, but also with the implementation of renewable systems of generation, independent of the type of building system used and of the building typology. Although it is true that the levels of industrialisation in the technological society today have reached several of the building process phases - particularly in the composite elements of buildings - it is also true that the quotas of development achieved in the area of construction have not reached the evolutionary levelfound in other fields of engineering, such as aeronautics or the automobile industry. Although there have been models and testimonial projects of lightweight industrialised building since the end of last century, even going back as far as the beginning of the XX century with examples of lightweight modular construction such as the Voisin House, industrialisation in the building industry has not been constant nor is its comercialisation comparable to massive and heavy construction. The terms industrialised building, prefabricated building, modular building and lightweight building, do not always refer to the same thing and they are not always synonymous. A building can be prefabricated yet not be modular or lightweight. To give an example, this is the case of building with prefabricated concrete panels. What is constant is that, in the case of lightweight modular construction, prefabrication and industrialisation are almost always implicit in many historical and contemporary examples. Energy efficiency (nZEB or even NZEB) is not normally linked to lightweight modular construction and/or industrialised lightweight; rather, it is united to the idea of massive closureswith high thermal inertia typical of design standards such as the Passive House; and although other concepts that subtract value from it are generally associated with lightweight building (short useful life, limited forms and function, inappropriate toany aesthetic pattern; limitation in comfort levels, etc.), the advances being achieved in technology for benefitting from energy and renewable systems of generation may well reverse these ideas and unify the criteria of efficiency + lightweight modular construction. Academic prototypes and projects - such as the Solar Decathlon competition organised by the US Department of Energy and celebrated since 2002, with its corresponding European events such as those held in 2010 and 2012, place a different slant on the idea of industrialised, modular and lightweight building within the context of energy efficiency, with prototypes of homes measuring approximately 60m2, proposed by university competitors, whose aim is to reach and/or develop the NZEB concept, or the zero energy building. This building option does not only signify durability, security and aesthetics, but also fast manufacture and assembly. It also has high energy benefits, as has been demonstrated in successive events of the Solar Decathlon. This type of initiative for the development of building technologies, does not only aim at energy efficiency, but also at the global concept of net energy, Energy Plus and zero CO2 emissions. The level of emissions in the manufacture and introduction of building materials in many cases depends not only on the inherent nature of the material, but also on the quantity of resources used to produce a specific unit of measurement (kg, m3, m2, ml, etc.). Thus in many cases itcould be validly arguedthat with less weight and smaller size, there will be fewer global emissions of greenhouse effect gases and less contamination. For the research carried out in this thesis prototypes such as the CML (3D Module) and CIL (panelled and elements) have been used as valid study references, becauseboth systems are comparablefor the purpose of analysing the energy benefits of closure materials. So as to reach a basic conclusion in this doctoral thesis - that sets out to demonstrate the technological/industrial viability of the combination of energy efficiency and lightweight modular construction - the departure point is the study of the state of the technique (from the selection of materials and the possible processes of industrialisation in manufacture, to their use on site, functioning and use, respecting the concepts of zero consumption, zero emissions of carbon and Energy Plus). Moreover, with the state of the technique identifying the current situation, tests and practices have been carried out with a natural scale prototype and test cells so as to verify the behaviour of the composite elements of these in certain climatic conditions. These types of result are contrasted with those obtained through computer simulation based on the same parameters and done, principally, using simplified methods of calculation, validated by institutions competent in energy efficiency in Spanish building and in line with the rules in force.
Resumo:
Este documento corresponde a la Tesis para optar al grado de Doctor en Arquitectura y Urbanismo en el marco del Programa de Doctorado conjunto de la Universidad Politécnica de Madrid y la Universidad de Chile. La investigación realizada es de carácter exploratorio-descriptivo con el propósito de establecer y relacionar conceptualmente las teorías y principios de la ergonomía y del diseño urbano, para proponer desde un enfoque sistémico criterios de confort en el diseño de la ciudad, que contribuyan a la calidad de vida y la vida urbana, dando a luz lineamientos para la “Ergociudad”; concepto que surge de la unión de las palabras Ergonomía y Ciudad. Al estudiar a diversos autores se concluye en la carencia de referentes de confort y de políticas basados en la relación empírica del ser humano en la ciudad que posibiliten la configuración del medio ambiente urbano a partir de ella. La ciudad se piensa y se construye desde su estructura y no desde una mirada sistémica e integrada de los factores dimensionales, ambientales y psicosociales condicionantes del confort en sus distintas escalas. La mirada respecto del desarrollo de la ciudad es físico constructiva y, por tanto, deja de lado el problema de los estresores o de la percepción de los factores de riesgo en el entorno construido. El tema central de esta tesis es proponer una estructura modélica de calidad de vida urbana denominada Ergociudad en base a los fundamentos teóricos de la Ergonomía y el Diseño Urbano y establecer el “Índice Ergourbano”, como representación de los factores ergonómicos presentes en la ciudad. En este marco, el enfoque de la ergonomía y sus prestaciones han sido trabajados en orden a facilitar mecanismos para disponer de sus procedimientos y de su modelo de análisis relacional a otras escalas. El concepto de “Ergociudad” y su propuesta de exploración desde las personas, postula una mirada sobre los problemas que enfrenta el ser humano en la ciudad considerando la dimensión de lo humano, desde perspectivas psicológicas y sociológicas para establecer y configurar la percepción de estrés y bienestar; la dimensión de lo urbano, representada por los objetos que componen el entorno (en sus distintas escalas); y, la dimensión de lo perceptual, que definiría el concepto de confort en la forma de comprender el mundo sensorial. Los resultados de la investigación confirman la hipótesis de trabajo en términos de demostrar que la percepción de disconfort en la ciudad reflejado en un índice de evaluación perceptual espacial denominado índice Ergourbano obtenido de las mediciones en situ de los factores ergonómicos del entorno. Los resultados finales de la tesis han permitido identificar variables afines en los aspectos espaciales y perceptuales. Ello mediante la exploración de las situaciones urbanas y sus conexiones para establecer el grado de adecuación del espacio urbano a las prácticas, usos y modos de las personas en la ciudad. Una vez aplicado y validado el método desarrollado se ha llegado a obtener información suficiente para aumentar el nivel de conocimiento sobre el espacio urbano con un enfoque relacional que permite entenderlo desde la experiencia de las personas que lo habitan, insistiendo en su aporte metodológico y proyectual considerando la inexistente aplicación de información que vincule la ergonomía a esta escala urbana. ABSTRACT This document corresponds to the thesis to obtain the degree of Doctor of Architecture and Urbanism in the framework of the combined doctorate program of the Technical University of Madrid and the University of Chile. The research carried out is of a descriptive–explanatory nature with the objective of establishing and conceptually relating the theories and principals of ergonomics (or human factors) and urban design. This is done in order to propose, from a systematic focus, comfort criteria in the design of cities that contribute to quality of life and urban life, giving birth to chacteristics for “Ergocity”; concepts that arise from the union of the words ergonomic and city. After studying diverse authors, one concludes the lack of references toward comfort and policies based on the empirical relation of humans in the city that allow for the configuration of the urban environment based on comfort. The city is thought out and built from its structure and not from a systematic and integrated viewpoint of the dimensional, environmental and psychosocial factors, determining factors of comfort in its distinct scales. The view regarding the development of the city is physical constructive and, therefore, leaves aside the problem of the stress factors or the perception of risk factors in the constructed environment. The central theme of this thesis is to propose a quality model of urban life entitled Ergo-city, based on the fundamental theories of the ergonomics and urban design, and to establish an “Ergourban index” as representation of the ergonomic factors present in the city. In this framework, the focus of ergonomics and its services have been used in order to facilitate mechanisms to arrange their procedures and their model of relational analysis on other scales. The concept of “Ergocity”and its offer of exploration from a people perspective, proposes a look at the problems that humans face in the city considering the nonhuman dimension, from psychological and sociological perspectives to establish and configure la perception of stress and well-being: the urban dimension, represented by the objects that the surroundings are made up of (on their distinct scales), and the perceptual dimension, which will define the concept of comfort by means of understanding the sensorial world. The results of the research confirm the working hypothesis in terms of demonstrating the perception of discomfort in the city reflected in an index of perceptual/spatial evaluation named ergo-urban obtained from in situ measurements of the ergonomic factors of the surroundings. The final results of the thesis have permitted the identification the identification of variables related to the spatial and perceptual aspects. All of this through the exploration of the urban situations and their connections in order to establish the level of adaptation of the urban space to the practices, uses and modes of the people in the city. Once applied and validated, the method of development has led to the collection of sufficient information to increase the level of knowledge of the urban space with a relational focus that allows us to understand it from the experience of the people who inhabit said space, persisting with its methodological and projective contribution considering the inexistent application of information that links the ergonomics on an urban scale.
Resumo:
En esta tesis se estudia cómo lograr el equilibrio entre dos fenómenos naturales que afectan a los huecos de fachadas: la iluminación natural y la ganancia solar. Es decir, el cómo, conseguir la optimización de la iluminación natural que se introduce a través de las ventanas existentes, sin realizar una laboriosa intervención de sustitución de las mismas y el cómo, conseguir la protección de la radiación solar directa de la zona acristalada, para evitar tanto las ganancias térmicas innecesarias como el deslumbramiento que afecta a la calidad lumínica de los recintos. Para el desarrollo esta investigación se ha propuesto una metodología de estudio dividida en dos fases: La primera, de Análisis y Diagnóstico, en la que se han de definir los estándares a cumplir y las variables con las que se evaluarán las bandejas. Y, la segunda, de Evaluación y Comprobación en la que se han de establecer los criterios de valoración y ponderación de cada variable. En la primera fase, se definirán las variables físico-ambientales, para lo que se seleccionarán algunas ciudades a estudiar, a las cuales se les estudiará las necesidades de confort térmico, se determinarán las dimensiones que deben tener las protecciones solares en esas ciudades, además se determinarán las actuaciones a realizar en los huecos de fachada según sea su posición en el plano vertical de la misma. Así mismo, se plantea hacer un análisis de casos reales, para lo que se caracterizarán desde el punto de vista lumínico algunas viviendas, realizando medidas “in situ” y comparando resultados con los que se obtienen de los programas de simulación, para seleccionar las viviendas en las que la realidad y la simulación se aproximen más, una de estas viviendas servirá de modelo en las simulaciones que se realizará en la segunda fase. También, en esta primera fase, mediante un modelo neutro, se estudiará el comportamiento térmico y lumínico del tamaño del hueco en el que se insertará la bandeja posteriormente, para luego estudiar la posición de la bandeja en el plano vertical de la ventana, desde el punto de vista ergonómico. Y finalmente se estudiará, el comportamiento térmico y lumínico del modelo con la bandeja ubicada a 40, 50 y 60cm del techo. En la segunda fase, se establecerá la valoración y ponderación de las variables con las que seleccionar la bandeja que mejor equilibre los aspectos térmicos y lumínicos, teniendo en cuenta estrategias pasivas de acondicionamiento ambiental, como favorecer las ganancias solares en invierno en horas diurnas y evitar las pérdidas de calor en horas nocturnas; y en verano implementar sistemas de sombreamiento en la zona acristalada para evitar las ganancias de calor; y, tanto en verano como en invierno, aprovechar la iluminación natural, para favorecer la iluminancia útil y evitar el deslumbramiento. Una vez definidos los criterios de valoración y ponderación se aplicará a la evaluación térmica y lumínica del modelo neutro con la bandeja, consiguiendo seleccionar la bandeja con mejor comportamiento. Posteriormente se comprobará la metodología de estudio desarrollada en el modelo seleccionado, se evaluará el comportamiento térmico y lumínico, con la incorporación de algunas alternativas de bandeja. Con esta investigación se quiere demostrar que mediante la aplicación de esta metodología de estudio, es posible evaluar y seleccionar bandejas que respondan a las necesidades requeridas en distintos casos de estudio, por lo que se considera que, la bandeja puede ser un elemento arquitectónico aplicable tanto en rehabilitación como en nueva construcción, de espacios en los que sea necesario mejorar sus condiciones lumínicas y térmicas simultáneamente. ABSTRACT This thesis studies how to balance two natural events that affect the window opening of facades: daylighting and solar gain. That is to say, how to achieve optimization of natural light that gets in through the existing windows, without making a laborious intervention of replacing them and how to get protection from direct solar radiation from the glass area, to avoid unnecessary heat gain and glare affecting the light quality of the enclosures. To develop this research, it has been proposed a methodology of study divided into two phases: First phase, Analysis and Diagnostics, in which the variables with which the light shelf are evaluated will be defined along with the standards the light shelves will meet. The second phase, Assessment and Verification, in which the assessment criteria and weighting of each variable will be established. In the first phase, the physical and environmental variables shall be defined, various cities will be selected to be studied, and in each the needs of thermal comfort will be determined along with the dimensions of shading devices in the cities. In addition the actions to be taken in the window opening of the façade will be determined, depending on their position in the vertical plane. An analysis of real cases will be undertaken, which will be characterized from the luminous point of view, performing "in situ" measurements and comparing results with those obtained from simulation programs, to select places/dwellings where reality and simulation are closer, one of these places/dwellings will be a model, in the simulations to perform at the second phase. Also, in this first phase, by a neutral model, the thermal and light behavior of the size of the window opening will be studied, in which the light shelf is inserted later, the position of the light shelf in the vertical plane of the window is studied, from an ergonomic point of view. And finally to study the thermal and light behavior of the model with the light shelf located at 40, 50 and 60cm from the ceiling. In the second phase, the evaluation and weighting of the variables will be established selecting the light shelf that best balances the thermal and daylighting aspects, taking into account passive environmental conditioning strategies; such as getting solar gains in winter during daylight hours, and preventing heat loss during the night hours; and in summer implementing shading systems in the glazing area to avoid heat gains. And in both summer and winter, taking advantage of natural lighting, to improve useful illuminance and avoid glare. Once defined, the evaluation criteria and weighting will be applied to thermal and daylighting evaluation to the neutral model with the light shelf, the best performing light shelf will be selected. The study methodology developed in the selected model will be verified the thermal and daylighting performance with the addition of some light shelf alternative will also be studied. With this research, we want to show that by applying this study methodology it is possible to evaluate and select the light shelf that meets the needs required in different case studies, so it is considered that the light shelf may be an applicable architectural element in both refurbishment and new construction of spaces where necessary to improve their daylighting and thermal conditions simultaneously.
Resumo:
Durante los últimos años, la construcción de grandes yates ha evolucionado hacia conceptos y diseños más complejos dónde se ha priorizado en muchas ocasiones la estética arquitectónica y exigencias de confort de los armadores y operadores dejando en segundo plano aspectos clave de seguridad. Diferentes Organismos Internacionales y las Sociedades de Clasificación han venido adaptando sus requisitos a la problemática específica de este tipo de buques, tratando de compatibilizar tendencias de diseño con exigencias de resistencia, integridad estructural, estanqueidad y seguridad entre otras. En la actualidad, la construcción de grandes yates con esloras incluso por encima de los 100 metros, el aumento del número de pasajeros por encima del límite tradicional de 12, las nuevas tendencias de ahorro energético y protección medioambiental que se están implantando en la industria en general y marítima en particular, plantean una serie de desafíos tanto a los diseñadores como a las Sociedades de Clasificación que deben avanzar en sus reglamentaciones para cubrir estos y otros aspectos. Son precisamente estos aspectos medioambientales, tradicionalmente relegados en la industria de grandes yates los que están ocupando en la actualidad un primer plano en los desarrollos de normativa de diferentes Organismos Internacionales y Nacionales. El impacto que estas nuevas normativas van a tener sobre el diseño de grandes yates a motor centra el desarrollo de esta Tesis. Hasta donde ha podido conocer el doctorando, esta es la primera vez que en una Tesis Doctoral se abordan los principales mecanismos que regulan el diseño y la construcción de grandes yates a motor, se estudian y analizan las regulaciones internacionales en materia de protección medioambiental y de eficiencia energética aplicables a los yates, se seleccionan y describen un conjunto de tecnologías maduras de carácter medioambiental, susceptibles de ser empleadas en yates y se determina los parámetros y aspectos del diseño a aplicar al proyecto de grandes yates a motor como resultado de la aplicación de estas tecnologías, analizados bajo la perspectiva de la Sociedad de Clasificación y de los Organismos Internacionales. La Tesis comienza con un análisis de la industria de construcción de grandes yates, la flota existente de grandes yates, la cartera actual de pedidos y la evolución esperada del mercado. Aquí se pone de manifiesto que a pesar de la crisis económica global de los últimos años, este mercado goza relativamente de buena salud y las previsiones son favorables, particularmente para el sector en Europa. A continuación se aborda el estado del arte del diseño de yate grande, sus peculiaridades, particularmente estructurales y de armamento, que le diferencian de otros tipos de buques y las tendencias en su diseño. Se pone de manifiesto cómo el proyecto de estos yates ha evolucionado hacia yates de gran tamaño y complejidad técnica, debido a la demanda y necesidades actuales y cómo ha influido en aspectos como la disposición estructural. Seguidamente se describen los principales mecanismos que regulan el diseño y construcción de grandes yates, particularmente el Código de Grandes Yates Comerciales de la Maritime & Coastguard Agency del Reino Unido, y las Reglas y Reglamentos de la Sociedad de Clasificación Lloyd’s Register para la Clasificación de yates; por ser ambas organizaciones las que lideran el Registro y la Clasificación respectivamente de este tipo de buques, objeto del estudio. El doctorando ejerce su actividad profesional como inspector de Lloyd’s Register en una oficina técnica de apoyo y evaluación de diseño, siendo especialista en grandes yates, lo que ha permitido exponer de primera mano el punto de vista de la Sociedad de Clasificación. En el siguiente Capítulo se describen las principales reglamentaciones internacionales de carácter medioambiental que afectan al diseño, construcción y operación de los yates, algunas de las cuales, como es el caso del Convenio Internacional para el Control y la Gestión del Agua de Lastre y Sedimentos de los buques (BWM 2004) aún no ha entrado en vigor a la fecha de terminación de esta Tesis. Seguidamente se realiza una selección de tecnologías desde el punto de vista de protección medioambiental y ahorro energético y su aplicación al diseño y construcción de grandes yates. Algunas de estas tecnologías son maduras y ya habían sido utilizadas con éxito en otros tipos de buques, pero su aplicación a los yates entraña ciertos desafíos que se describen en este Capítulo. A continuación se determinan y analizan los principales parámetros de diseño de los yates grandes a motor como consecuencia de las tecnologías estudiadas y se indican una serie de aspectos de diseño bajo la perspectiva de la Sociedad de Clasificación y de los Organismos Marítimos Internacionales. Finalmente se llega a una serie de conclusiones y se identifican futuras líneas de investigación en relación a las tecnologías descritas en este trabajo. ABSTRACT In recent years, the building of large yachts has evolved into more complex concepts and designs where often prioritized architectural aesthetics and comfort requirements of owners and operators leaving in the background key security aspects. Several international organizations and classification societies have been adapting their requirements to the specific problems of this type of vessel, trying to reconcile demands design trends with resistance, structural integrity, watertightness and safety among others. At present, the building of large yachts with lengths even above 100 meters, the increase in passenger numbers over the traditional limit of 12, new trends of energy saving and environmental protection are being implemented in the marine industry in particular, they pose a number of challenges to both designers and classification societies that should update and improve their regulations to cover these and other aspects. It is precisely these environmental issues, traditionally relegated to the large yacht industry, which are currently occupying center stage in the development of rules of different international and national bodies. The impact that these new standards will have on the design of large motor yachts focuses the development of this thesis. As far as it is known, this is the first time in a doctoral thesis the main mechanisms regulating the design and construction of large motor yachts are addressed, the international regulations on environmental protection and energy efficiency requirements for yachts are studied and analyzed, a set of mature environmental technologies, capable of being applied to yachts are selected and described, the parameters and design aspects to be applied to large yacht projects as a result of the application of these technologies are determined and analyzed from the perspective of the Classification Society and international organizations. The thesis begins with an analysis of the shipbuilding industry of large yachts, the existing fleet of large yachts, the current backlog and the expected market developments. Here it becomes clear that despite the global economic crisis of recent years, this market enjoys relatively good health and prospects are favorable, particularly for the sector in Europe. Then the state of the art of large yacht design, its peculiarities, particularly structural and outfitting, that differentiate it from other types of ships and trends in design is discussed. It shows how the project of these yachts has evolved to large yachts and technical complexity, due to the demand and needs and how it has influenced the structural arrangement aspects. Then the main mechanisms regulating the design and construction of large yachts, particularly the Large Commercial Yacht Code developed by the Maritime & Coastguard Agency (UK) and the Lloyd’s Register Rules & Regulations for the Classification of Special Service Craft including yachts are described; the two organizations to be leading the registration and classification respectively of such vessels under study. The doctoral student practices his profession as a senior specialist to Lloyd’s Register in a technical support office, dealing with the design assessment of large yachts, which allowed exposing firsthand view of the Classification Society. In the next chapter describes the main international environmental regulations, affecting the design, construction and operation of yachts, some of which, such as the International Convention for the Control and Management of Ships' Ballast Water and Sediments (BWM 2004) has not yet entered into force at the date of completion of this thesis. Following is a selection of technologies from the point of view of environmental protection and energy saving and its application to design and construction of large yachts. Some of these technologies are mature and have already been used successfully in other ship types, but their application to yachts entails certain challenges that are described in this chapter. Then identifies and analyzes the main design parameters of large motor yachts as a result of the technologies studied and a number of design aspects are given from the perspective of Classification Society and international maritime organizations. Finally, a number of conclusions are exposed, and future research is identified in relation to the technologies described in this Thesis.
Resumo:
La evaluación energética de edificios, suele cuantificar resultados referentes a consumos, ahorros energéticos y económicos, amortizaciones, emisiones de CO2, etc.; sin embargo, existen otros factores habitualmente no considerados que pueden ser determinantes en la elección de soluciones para el mejor comportamiento y la eficiencia energética global de las edificaciones y en el bienestar y la calidad de vida de sus usuarios. En el presente artículo se muestran casos reales en los que aparecen ejemplos y cuestiones como la inadecuación de algunos parámetros en condiciones sociales de pobreza energética donde no cabe valorar ahorros sin consumos, la interrelación entre indicadores energéticos y otros temporales y sociales habitualmente poco tratados, la influencia de soluciones constructivas que se contabilizan energéticamente de modo poco efectivo, pero que consiguen resultados reales superiores, los variaciones en los modelos de confort, y la atención a las estrategias teniendo en cuenta los escenarios del cambio climático.
Resumo:
La necesidad creciente del ciudadano por recuperar las relaciones con su entorno en busca de un cambio que mejore su calidad de vida, hace que nos replanteemos las ciudades y los elementos que la componen. La presente investigación se centra en los pavimentos urbanos como elemento principal de conexión entre el ciudadano y su entorno, de generación del paisaje urbano. El paisaje urbano nos ofrece el pavimento como parte exterior y visible de su piel, la epidermis, en la que se apoya y desarrolla toda la actividad de la ciudad, dando forma e influyendo en la calidad del espacio Los pavimentos urbanos deben permitir la utilización y el uso de la vía pública exterior con total seguridad y confort para el ciudadano. El objetivo principal de la presente investigación es poder establecer criterios de diseño y uso en los pavimentos urbanos, atendiendo a los parámetros funcionales (estudio de la marcha humana: normal y patológica, ergonomía, antropometría, biomecánica) y formales o de diseño (relacionados con la dimensión, la forma, el color, la textura o las juntas, la usabilidad, durabilidad, desgaste). Se añaden factores externos como contaminantes, lugar, usos, climatología. La normativa existente, tanto a nivel nacional como internacional, no establece un nivel de seguridad para los pavimentos exteriores. La situación se agrava con la existencia de una variedad de métodos de ensayos y de directivas europeas, no consiguiendo llegar a un consenso en la designación del método de ensayo más adecuado al tipo de material y uso. La tesis concluye que se deben tener en cuenta las necesidades del ciudadano. Seleccionar el material adecuado al lugar y buscar las características adecuadas del material en las condiciones de uso previstas. Conocer el lugar y el uso al que se destina de forma que definamos las características fundamentales que se mantienen inalterables durante un periodo de tiempo razonable ABSTRACT The increasing need for citizens to recover their relationship with their environment as they seek to improve quality of life has made us reconsider cities and the elements that constitute them. This piece of research is focused on urban pavements as an essential element of connection between the citizen and their environment in the urban area. The urban area offers pavements as an external and visible part of its skin, its epidermis, upon which all activity is supported and carried out, giving shape and influencing in the quality of space. Citizens should be allowed to use urban pavements on public roads with total safety and comfort. The main objective of this research is to be able to establish criteria for the design and use of urban pavements, according to both functional parameters (study of human walking – normal and pathological, ergonometric, anthropometric, and biomechanically) as well as formal or design parameters (related to size, shape, colour, texture, joinings, usability, durability and resilience). Further external considerations are taken into account such as pollution, location, use and climate. Current regulations, both national and internationally, do not establish a standard degree of safety for exterior pavements. The situation is complicated further by the existence of a number of test methods and European directives, that do not reach a consensus on the most appropriate test methods on usage and materials. The thesis concludes that the focus should be citizen-centric. Materials should be chosen according to how appropriate they are for the location and the designated kind of usage. Understanding and knowing the site and the proposed kind of use are of fundamental necessity when defining the characteristics that are unchanging over a reasonable period of time.