838 resultados para computer-based instrumentation
Resumo:
In knowledge technology work, as expressed by the scope of this conference, there are a number of communities, each uncovering new methods, theories, and practices. The Library and Information Science (LIS) community is one such community. This community, through tradition and innovation, theories and practice, organizes knowledge and develops knowledge technologies formed by iterative research hewn to the values of equal access and discovery for all. The Information Modeling community is another contributor to knowledge technologies. It concerns itself with the construction of symbolic models that capture the meaning of information and organize it in ways that are computer-based, but human understandable. A recent paper that examines certain assumptions in information modeling builds a bridge between these two communities, offering a forum for a discussion on common aims from a common perspective. In a June 2000 article, Parsons and Wand separate classes from instances in information modeling in order to free instances from what they call the “tyranny” of classes. They attribute a number of problems in information modeling to inherent classification – or the disregard for the fact that instances can be conceptualized independent of any class assignment. By faceting instances from classes, Parsons and Wand strike a sonorous chord with classification theory as understood in LIS. In the practice community and in the publications of LIS, faceted classification has shifted the paradigm of knowledge organization theory in the twentieth century. Here, with the proposal of inherent classification and the resulting layered information modeling, a clear line joins both the LIS classification theory community and the information modeling community. Both communities have their eyes turned toward networked resource discovery, and with this conceptual conjunction a new paradigmatic conversation can take place. Parsons and Wand propose that the layered information model can facilitate schema integration, schema evolution, and interoperability. These three spheres in information modeling have their own connotation, but are not distant from the aims of classification research in LIS. In this new conceptual conjunction, established by Parsons and Ward, information modeling through the layered information model, can expand the horizons of classification theory beyond LIS, promoting a cross-fertilization of ideas on the interoperability of subject access tools like classification schemes, thesauri, taxonomies, and ontologies. This paper examines the common ground between the layered information model and faceted classification, establishing a vocabulary and outlining some common principles. It then turns to the issue of schema and the horizons of conventional classification and the differences between Information Modeling and Library and Information Science. Finally, a framework is proposed that deploys an interpretation of the layered information modeling approach in a knowledge technologies context. In order to design subject access systems that will integrate, evolve and interoperate in a networked environment, knowledge organization specialists must consider a semantic class independence like Parsons and Wand propose for information modeling.
Resumo:
Electrical Impedance Tomography (EIT) is a computerized medical imaging technique which reconstructs the electrical impedance images of a domain under test from the boundary voltage-current data measured by an EIT electronic instrumentation using an image reconstruction algorithm. Being a computed tomography technique, EIT injects a constant current to the patient's body through the surface electrodes surrounding the domain to be imaged (Omega) and tries to calculate the spatial distribution of electrical conductivity or resistivity of the closed conducting domain using the potentials developed at the domain boundary (partial derivative Omega). Practical phantoms are essentially required to study, test and calibrate a medical EIT system for certifying the system before applying it on patients for diagnostic imaging. Therefore, the EIT phantoms are essentially required to generate boundary data for studying and assessing the instrumentation and inverse solvers a in EIT. For proper assessment of an inverse solver of a 2D EIT system, a perfect 2D practical phantom is required. As the practical phantoms are the assemblies of the objects with 3D geometries, the developing of a practical 2D-phantom is a great challenge and therefore, the boundary data generated from the practical phantoms with 3D geometry are found inappropriate for assessing a 2D inverse solver. Furthermore, the boundary data errors contributed by the instrumentation are also difficult to separate from the errors developed by the 3D phantoms. Hence, the errorless boundary data are found essential to assess the inverse solver in 2D EIT. In this direction, a MatLAB-based Virtual Phantom for 2D EIT (MatVP2DEIT) is developed to generate accurate boundary data for assessing the 2D-EIT inverse solvers and the image reconstruction accuracy. MatVP2DEIT is a MatLAB-based computer program which simulates a phantom in computer and generates the boundary potential data as the outputs by using the combinations of different phantom parameters as the inputs to the program. Phantom diameter, inhomogeneity geometry (shape, size and position), number of inhomogeneities, applied current magnitude, background resistivity, inhomogeneity resistivity all are set as the phantom variables which are provided as the input parameters to the MatVP2DEIT for simulating different phantom configurations. A constant current injection is simulated at the phantom boundary with different current injection protocols and boundary potential data are calculated. Boundary data sets are generated with different phantom configurations obtained with the different combinations of the phantom variables and the resistivity images are reconstructed using EIDORS. Boundary data of the virtual phantoms, containing inhomogeneities with complex geometries, are also generated for different current injection patterns using MatVP2DEIT and the resistivity imaging is studied. The effect of regularization method on the image reconstruction is also studied with the data generated by MatVP2DEIT. Resistivity images are evaluated by studying the resistivity parameters and contrast parameters estimated from the elemental resistivity profiles of the reconstructed phantom domain. Results show that the MatVP2DEIT generates accurate boundary data for different types of single or multiple objects which are efficient and accurate enough to reconstruct the resistivity images in EIDORS. The spatial resolution studies show that, the resistivity imaging conducted with the boundary data generated by MatVP2DEIT with 2048 elements, can reconstruct two circular inhomogeneities placed with a minimum distance (boundary to boundary) of 2 mm. It is also observed that, in MatVP2DEIT with 2048 elements, the boundary data generated for a phantom with a circular inhomogeneity of a diameter less than 7% of that of the phantom domain can produce resistivity images in EIDORS with a 1968 element mesh. Results also show that the MatVP2DEIT accurately generates the boundary data for neighbouring, opposite reference and trigonometric current patterns which are very suitable for resistivity reconstruction studies. MatVP2DEIT generated data are also found suitable for studying the effect of the different regularization methods on reconstruction process. Comparing the reconstructed image with an original geometry made in MatVP2DEIT, it would be easier to study the resistivity imaging procedures as well as the inverse solver performance. Using the proposed MatVP2DEIT software with modified domains, the cross sectional anatomy of a number of body parts can be simulated in PC and the impedance image reconstruction of human anatomy can be studied.
Resumo:
The impact of digital technology within the creative industries has brought with it a range of new opportunities for collaborative, cross-disciplinary and multi-disciplinary practice. Along with these opportunities has come the need to re-evaluate how we as educators approach teaching within this new digital culture. Within the field of animation, there has been a radical shift in the expectations of students, industry and educators as animation has become central to a range of new moving image practices. This paper interrogates the effectiveness of adopting a studio-based collaborative production project as a method for educating students within this new moving-image culture. The project was undertaken, as part of the Creative Industries Transitions to New Professional Environments program at Queensland University of Technology (QUT) in Brisbane Australia. A number of students studying across the Creative Industries Faculty and the Faculty of Science and Technology were invited to participate in the development of a 3D animated short film. The project offered students the opportunity to become actively involved in all stages of the creative process, allowing them to experience informal learning through collaborative professional practice. It is proposed that theoretical principles often associated with andragogy and constructivism can be used to design and deliver programs that address the emerging issues surrounding the teaching of this new moving image culture.
Resumo:
Accurate and efficient thermal-infrared (IR) camera calibration is important for advancing computer vision research within the thermal modality. This paper presents an approach for geometrically calibrating individual and multiple cameras in both the thermal and visible modalities. The proposed technique can be used to correct for lens distortion and to simultaneously reference both visible and thermal-IR cameras to a single coordinate frame. The most popular existing approach for the geometric calibration of thermal cameras uses a printed chessboard heated by a flood lamp and is comparatively inaccurate and difficult to execute. Additionally, software toolkits provided for calibration either are unsuitable for this task or require substantial manual intervention. A new geometric mask with high thermal contrast and not requiring a flood lamp is presented as an alternative calibration pattern. Calibration points on the pattern are then accurately located using a clustering-based algorithm which utilizes the maximally stable extremal region detector. This algorithm is integrated into an automatic end-to-end system for calibrating single or multiple cameras. The evaluation shows that using the proposed mask achieves a mean reprojection error up to 78% lower than that using a heated chessboard. The effectiveness of the approach is further demonstrated by using it to calibrate two multiple-camera multiple-modality setups. Source code and binaries for the developed software are provided on the project Web site.
Resumo:
Monitoring fetal wellbeing is a compelling problem in modern obstetrics. Clinicians have become increasingly aware of the link between fetal activity (movement), well-being, and later developmental outcome. We have recently developed an ambulatory accelerometer-based fetal activity monitor (AFAM) to record 24-hour fetal movement. Using this system, we aim at developing signal processing methods to automatically detect and quantitatively characterize fetal movements. The first step in this direction is to test the performance of the accelerometer in detecting fetal movement against real-time ultrasound imaging (taken as the gold standard). This paper reports first results of this performance analysis.
Resumo:
The common goal of tissue engineering is to develop substitutes that can closely mimic the structure of extracellular matrix (ECM). However, similarly important is the intensive material properties which have often been overlooked, in particular, for soft tissues that are not to bear load assumingly. The mechanostructural properties determine not only the structural stability of biomaterials but also their physiological functionality by directing cellular activity and regulating cell fate decision. The aim here is to emphasize that cells could sense intensive material properties like elasticity and reside, proliferate, migrate and differentiate accordinglyno matter if the construct is from a natural source like cartilage, skin etc. or of synthetic one. Meanwhile, the very objective of this work is to provide a tunable scheme for manipulating the elasticity of collagen-based constructs to be used to demonstrate how to engineer cell behavior and regulate mechanotransduction. Articular cartilage was chosen as it represents one of the most complex hierarchical arrangements of collagen meshwork in both connective tissues and ECM-like biomaterials. Corona discharge treatment was used to produce constructs with varying density of crosslinked collagen and stiffness accordingly. The results demonstrated that elastic modulus increased up to 33% for samples treated up to one minute as crosslink density was found to increase with exposure time. According to the thermal analysis, longer exposure to corona increased crosslink density as the denaturation enthalpy increased. However the spectroscopy results suggested that despite the stabilization of the collagen structure the integrity of the triple helical structure remained intact. The in vitro superficial culture of heterologous chondrocytes also determined that the corona treatment can modulate migration with increased focal adhesion of cells due to enhanced stiffness, without cytotoxicity effects, and providing the basis for reinforcing three-dimensional collagen-based biomaterials in order to direct cell function and mediate mechanotransduction.
Resumo:
Fire incident in buildings is common, so the fire safety design of the framed structure is imperative, especially for the unprotected or partly protected bare steel frames. However, software for structural fire analysis is not widely available. As a result, the performance-based structural fire design is urged on the basis of using user-friendly and conventional nonlinear computer analysis programs so that engineers do not need to acquire new structural analysis software for structural fire analysis and design. The tool is desired to have the capacity of simulating the different fire scenarios and associated detrimental effects efficiently, which includes second-order P-D and P-d effects and material yielding. Also the nonlinear behaviour of large-scale structure becomes complicated when under fire, and thus its simulation relies on an efficient and effective numerical analysis to cope with intricate nonlinear effects due to fire. To this end, the present fire study utilizes a second order elastic/plastic analysis software NIDA to predict structural behaviour of bare steel framed structures at elevated temperatures. This fire study considers thermal expansion and material degradation due to heating. Degradation of material strength with increasing temperature is included by a set of temperature-stress-strain curves according to BS5950 Part 8 mainly, which implicitly allows for creep deformation. This finite element stiffness formulation of beam-column elements is derived from the fifth-order PEP element which facilitates the computer modeling by one member per element. The Newton-Raphson method is used in the nonlinear solution procedure in order to trace the nonlinear equilibrium path at specified elevated temperatures. Several numerical and experimental verifications of framed structures are presented and compared against solutions in literature. The proposed method permits engineers to adopt the performance-based structural fire analysis and design using typical second-order nonlinear structural analysis software.
Resumo:
A crucial issue with hybrid quantum secret sharing schemes is the amount of data that is allocated to the participants. The smaller the amount of allocated data, the better the performance of a scheme. Moreover, quantum data is very hard and expensive to deal with, therefore, it is desirable to use as little quantum data as possible. To achieve this goal, we first construct extended unitary operations by the tensor product of n, n ≥ 2, basic unitary operations, and then by using those extended operations, we design two quantum secret sharing schemes. The resulting dual compressible hybrid quantum secret sharing schemes, in which classical data play a complementary role to quantum data, range from threshold to access structure. Compared with the existing hybrid quantum secret sharing schemes, our proposed schemes not only reduce the number of quantum participants, but also the number of particles and the size of classical shares. To be exact, the number of particles that are used to carry quantum data is reduced to 1 while the size of classical secret shares also is also reduced to l−2 m−1 based on ((m+1, n′)) threshold and to l−2 r2 (where r2 is the number of maximal unqualified sets) based on adversary structure. Consequently, our proposed schemes can greatly reduce the cost and difficulty of generating and storing EPR pairs and lower the risk of transmitting encoded particles.
Resumo:
The use of UAVs for remote sensing tasks; e.g. agriculture, search and rescue is increasing. The ability for UAVs to autonomously find a target and perform on-board decision making, such as descending to a new altitude or landing next to a target is a desired capability. Computer-vision functionality allows the Unmanned Aerial Vehicle (UAV) to follow a designated flight plan, detect an object of interest, and change its planned path. In this paper we describe a low cost and an open source system where all image processing is achieved on-board the UAV using a Raspberry Pi 2 microprocessor interfaced with a camera. The Raspberry Pi and the autopilot are physically connected through serial and communicate via MAVProxy. The Raspberry Pi continuously monitors the flight path in real time through USB camera module. The algorithm checks whether the target is captured or not. If the target is detected, the position of the object in frame is represented in Cartesian coordinates and converted into estimate GPS coordinates. In parallel, the autopilot receives the target location approximate GPS and makes a decision to guide the UAV to a new location. This system also has potential uses in the field of Precision Agriculture, plant pest detection and disease outbreaks which cause detrimental financial damage to crop yields if not detected early on. Results show the algorithm is accurate to detect 99% of object of interest and the UAV is capable of navigation and doing on-board decision making.
Resumo:
A Radio Frequency (RF) based digital data transmission scheme with 8 channel encoder/decoder ICs is proposed for surface electrode switching of a 16-electrode wireless Electrical Impedance Tomography (EIT) system. A RF based wireless digital data transmission module (WDDTM) is developed and the electrode switching of a EIT system is studied by analyzing the boundary data collected and the resistivity images of practical phantoms. An analog multiplexers based electrode switching module (ESM) is developed with analog multiplexers and switched with parallel digital data transmitted by a wireless transmitter/receiver (T-x/R-x) module working with radio frequency technology. Parallel digital bits are generated using NI USB 6251 card working in LabVIEW platform and sent to transmission module to transmit the digital data to the receiver end. The transmitter/receiver module developed is properly interfaced with the personal computer (PC) and practical phantoms through the ESM and USB based DAQ system respectively. It is observed that the digital bits required for multiplexer operation are sequentially generated by the digital output (D/O) ports of the DAQ card. Parallel to serial and serial to parallel conversion of digital data are suitably done by encoder and decoder ICs. Wireless digital data transmission module successfully transmitted and received the parallel data required for switching the current and voltage electrodes wirelessly. 1 mA, 50 kHz sinusoidal constant current is injected at the phantom boundary using common ground current injection protocol and the boundary potentials developed at the voltage electrodes are measured. Resistivity images of the practical phantoms are reconstructed from boundary data using EIDORS. Boundary data and the resistivity images reconstructed from the surface potentials are studied to assess the wireless digital data transmission system. Boundary data profiles of the practical phantom with different configurations show that the multiplexers are operating in the required sequence for common ground current injection protocol. The voltage peaks obtained at the proper positions in the boundary data profiles proved the sequential operation of multiplexers and successful wireless transmission of digital bits. Reconstructed images and their image parameters proved that the boundary data are successfully acquired by the DAQ system which in turn again indicates a sequential and proper operation of multiplexers as well as the successful wireless transmission of digital bits. Hence the developed RF based wireless digital data transmission module (WDDTM) is found suitable for transmitting digital bits required for electrode switching in wireless EIT data acquisition system. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
For the purpose of human-computer interaction (HCI), a vision-based gesture segmentation approach is proposed. The technique essentially includes skin color detection and gesture segmentation. The skin color detection employs a skin-color artificial neural network (ANN). To merge and segment the region of interest, we propose a novel mountain algorithm. The details of the approach and experiment results are provided. The experimental segmentation accuracy is 96.25%. (C) 2003 Society of Photo-Optical Instrumentation Engineers.