907 resultados para computer-based diagnostics
Resumo:
Phospholipases A(2) (PLA(2)) are enzymes commonly found in snake venoms from Viperidae and Elaphidae families, which are major components thereof. Many plants are used in traditional medicine its active agents against various effects induced by snakebite. This article presents the PLA(2) BthTX-I structure prediction based on homology modeling. In addition, we have performed virtual screening in a large database yielding a set of potential bioactive inhibitors. A flexible docking program was used to investigate the interactions between the receptor and the new ligands. We have performed molecular interaction fields (MIFs) calculations with the phospholipase model. Results confirm the important role of Lys49 for binding ligands and suggest three additional residues as well. We have proposed a theoretically nontoxic, drug-like, and potential novel BthTX-I inhibitor. These calculations have been used to guide the design of novel phospholipase inhibitors as potential lead compounds that may be optimized for future treatment of snakebite victims as well as other human diseases in which PLA(2) enzymes are involved.
Resumo:
This paper presents the unique collection of additional features of Qu-Prolog, a variant of the Al programming language Prolog, and illustrates how they can be used for implementing DAI applications. By this we mean applications comprising communicating information servers, expert systems, or agents, with sophisticated reasoning capabilities and internal concurrency. Such an application exploits the key features of Qu-Prolog: support for the programming of sound non-clausal inference systems, multi-threading, and high level inter-thread message communication between Qu-Prolog query threads anywhere on the internet. The inter-thread communication uses email style symbolic names for threads, allowing easy construction of distributed applications using public names for threads. How threads react to received messages is specified by a disjunction of reaction rules which the thread periodically executes. A communications API allows smooth integration of components written in C, which to Qu-Prolog, look like remote query threads.
Resumo:
In this paper we present a model of specification-based testing of interactive systems. This model provides the basis for a framework to guide such testing. Interactive systems are traditionally decomposed into a functionality component and a user interface component; this distinction is termed dialogue separation and is the underlying basis for conceptual and architectural models of such systems. Correctness involves both proper behaviour of the user interface and proper computation by the underlying functionality. Specification-based testing is one method used to increase confidence in correctness, but it has had limited application to interactive system development to date.
Resumo:
Interactive health communication using Internet technologies is expanding the range and flexibility of intervention and teaching options available in preventive medicine and the health sciences. Advantages of interactive health communication include the enhanced convenience, novelty, and appeal of computer-mediated communication; its flexibility and interactivity; and automated processing. We outline some of these fundamental aspects of computer-mediated communication as it applies to preventive medicine. Further, a number of key pathways of information technology evolution are creating new opportunities for the delivery of professional education in preventive medicine and other health domains, as well as for delivering automated, self-instructional health behavior-change programs through the Internet. We briefly describe several of these key evolutionary pathways, We describe some examples from work we have done in Australia. These demonstrate how we have creatively responded to the challenges of these new information environments, and how they may be pursued in the education of preventive medicine and other health care practitioners and in the development and delivery of health behavior change programs through the Internet. Innovative and thoughtful applications of this new technology can increase the consistency, reliability, and quality of information delivered.
Resumo:
Cpfg is a program for simulating and visualizing plant development, based on the theory of L-systems. A special-purpose programming language, used to specify plant models, is an essential feature of cpfg. We review postulates of L-system theory that have influenced the design of this language. We then present the main constructs of this language, and evaluate it from a user's perspective.
Resumo:
The World Wide Web (WWW) is useful for distributing scientific data. Most existing web data resources organize their information either in structured flat files or relational databases with basic retrieval capabilities. For databases with one or a few simple relations, these approaches are successful, but they can be cumbersome when there is a data model involving multiple relations between complex data. We believe that knowledge-based resources offer a solution in these cases. Knowledge bases have explicit declarations of the concepts in the domain, along with the relations between them. They are usually organized hierarchically, and provide a global data model with a controlled vocabulary, We have created the OWEB architecture for building online scientific data resources using knowledge bases. OWEB provides a shell for structuring data, providing secure and shared access, and creating computational modules for processing and displaying data. In this paper, we describe the translation of the online immunological database MHCPEP into an OWEB system called MHCWeb. This effort involved building a conceptual model for the data, creating a controlled terminology for the legal values for different types of data, and then translating the original data into the new structure. The 0 WEB environment allows for flexible access to the data by both users and computer programs.
Resumo:
Spatial data has now been used extensively in the Web environment, providing online customized maps and supporting map-based applications. The full potential of Web-based spatial applications, however, has yet to be achieved due to performance issues related to the large sizes and high complexity of spatial data. In this paper, we introduce a multiresolution approach to spatial data management and query processing such that the database server can choose spatial data at the right resolution level for different Web applications. One highly desirable property of the proposed approach is that the server-side processing cost and network traffic can be reduced when the level of resolution required by applications are low. Another advantage is that our approach pushes complex multiresolution structures and algorithms into the spatial database engine. That is, the developer of spatial Web applications needs not to be concerned with such complexity. This paper explains the basic idea, technical feasibility and applications of multiresolution spatial databases.
Resumo:
Test templates and a test template framework are introduced as useful concepts in specification-based testing. The framework can be defined using any model-based specification notation and used to derive tests from model-based specifications-in this paper, it is demonstrated using the Z notation. The framework formally defines test data sets and their relation to the operations in a specification and to other test data sets, providing structure to the testing process. Flexibility is preserved, so that many testing strategies can be used. Important application areas of the framework are discussed, including refinement of test data, regression testing, and test oracles.
Resumo:
We propose a simulated-annealing-based genetic algorithm for solving model parameter estimation problems. The algorithm incorporates advantages of both genetic algorithms and simulated annealing. Tests on computer-generated synthetic data that closely resemble optical constants of a metal were performed to compare the efficiency of plain genetic algorithms against the simulated-annealing-based genetic algorithms. These tests assess the ability of the algorithms to and the global minimum and the accuracy of values obtained for model parameters. Finally, the algorithm with the best performance is used to fit the model dielectric function to data for platinum and aluminum. (C) 1997 Optical Society of America.
Resumo:
Nursing diagnoses associated with alterations of urinary elimination require different interventions, Nurses, who are not specialists, require support to diagnose and manage patients with disturbances of urine elimination. The aim of this study was to present a model based on fuzzy logic for differential diagnosis of alterations in urinary elimination, considering nursing diagnosis approved by the North American Nursing Diagnosis Association, 2001-2002. Fuzzy relations and the maximum-minimum composition approach were used to develop the system. The model performance was evaluated with 195 cases from the database of a previous study, resulting in 79.0% of total concordance and 19.5% of partial concordance, when compared with the panel of experts. Total discordance was observed in only three cases (1.5%). The agreement between model and experts was excellent (kappa = 0.98, P < .0001) or substantial (kappa = 0.69, P < .0001) when considering the overestimative accordance (accordance was considered when at least one diagnosis was equal) and the underestimative discordance (discordance was considered when at least one diagnosis was different), respectively. The model herein presented showed good performance and a simple theoretical structure, therefore demanding few computational resources.
Resumo:
We suggest a new notion of behaviour preserving transition refinement based on partial order semantics. This notion is called transition refinement. We introduced transition refinement for elementary (low-level) Petri Nets earlier. For modelling and verifying complex distributed algorithms, high-level (Algebraic) Petri nets are usually used. In this paper, we define transition refinement for Algebraic Petri Nets. This notion is more powerful than transition refinement for elementary Petri nets because it corresponds to the simultaneous refinement of several transitions in an elementary Petri net. Transition refinement is particularly suitable for refinement steps that increase the degree of distribution of an algorithm, e.g. when synchronous communication is replaced by asynchronous message passing. We study how to prove that a replacement of a transition is a transition refinement.
Resumo:
In this paper, we propose a method based on association rule-mining to enhance the diagnosis of medical images (mammograms). It combines low-level features automatically extracted from images and high-level knowledge from specialists to search for patterns. Our method analyzes medical images and automatically generates suggestions of diagnoses employing mining of association rules. The suggestions of diagnosis are used to accelerate the image analysis performed by specialists as well as to provide them an alternative to work on. The proposed method uses two new algorithms, PreSAGe and HiCARe. The PreSAGe algorithm combines, in a single step, feature selection and discretization, and reduces the mining complexity. Experiments performed on PreSAGe show that this algorithm is highly suitable to perform feature selection and discretization in medical images. HiCARe is a new associative classifier. The HiCARe algorithm has an important property that makes it unique: it assigns multiple keywords per image to suggest a diagnosis with high values of accuracy. Our method was applied to real datasets, and the results show high sensitivity (up to 95%) and accuracy (up to 92%), allowing us to claim that the use of association rules is a powerful means to assist in the diagnosing task.
Resumo:
Over the past years, component-based software engineering has become an established paradigm in the area of complex software intensive systems. However, many techniques for analyzing these systems for critical properties currently do not make use of the component orientation. In particular, safety analysis of component-based systems is an open field of research. In this chapter we investigate the problems arising and define a set of requirements that apply when adapting the analysis of safety properties to a component-based software engineering process. Based on these requirements some important component-oriented safety evaluation approaches are examined and compared.
Resumo:
This paper describes a practical application of MDA and reverse engineering based on a domain-specific modelling language. A well defined metamodel of a domain-specific language is useful for verification and validation of associated tools. We apply this approach to SIFA, a security analysis tool. SIFA has evolved as requirements have changed, and it has no metamodel. Hence, testing SIFA’s correctness is difficult. We introduce a formal metamodelling approach to develop a well-defined metamodel of the domain. Initially, we develop a domain model in EMF by reverse engineering the SIFA implementation. Then we transform EMF to Object-Z using model transformation. Finally, we complete the Object-Z model by specifying system behavior. The outcome is a well-defined metamodel that precisely describes the domain and the security properties that it analyses. It also provides a reliable basis for testing the current SIFA implementation and forward engineering its successor.