886 resultados para computer based experiments


Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper presents methods based on Information Filters for solving matching problems with emphasis on real-time, or effectively real-time applications. Both applications discussed in this work deal with ultrasound-based rigid registration in computer-assisted orthopedic surgery. In the first application, the usual workflow of rigid registration is reformulated such that registration algorithms would iterate while the surgeon is acquiring ultrasound images of the anatomy to be operated. Using this effectively real-time approach to registration, the surgeon would then receive feedback in order to better gauge the quality of the final registration outcome. The second application considered in this paper circumvents the need to attach physical markers to bones for anatomical referencing. Experiments using anatomical objects immersed in water are performed in order to evaluate and compare the different methods presented herein, using both 2D as well as real-time 3D ultrasound.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Non-linear image registration is an important tool in many areas of image analysis. For instance, in morphometric studies of a population of brains, free-form deformations between images are analyzed to describe the structural anatomical variability. Such a simple deformation model is justified by the absence of an easy expressible prior about the shape changes. Applying the same algorithms used in brain imaging to orthopedic images might not be optimal due to the difference in the underlying prior on the inter-subject deformations. In particular, using an un-informed deformation prior often leads to local minima far from the expected solution. To improve robustness and promote anatomically meaningful deformations, we propose a locally affine and geometry-aware registration algorithm that automatically adapts to the data. We build upon the log-domain demons algorithm and introduce a new type of OBBTree-based regularization in the registration with a natural multiscale structure. The regularization model is composed of a hierarchy of locally affine transformations via their logarithms. Experiments on mandibles show improved accuracy and robustness when used to initialize the demons, and even similar performance by direct comparison to the demons, with a significantly lower degree of freedom. This closes the gap between polyaffine and non-rigid registration and opens new ways to statistically analyze the registration results.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper presents a new approach for reconstructing a patient-specific shape model and internal relative intensity distribution of the proximal femur from a limited number (e.g., 2) of calibrated C-arm images or X-ray radiographs. Our approach uses independent shape and appearance models that are learned from a set of training data to encode the a priori information about the proximal femur. An intensity-based non-rigid 2D-3D registration algorithm is then proposed to deformably fit the learned models to the input images. The fitting is conducted iteratively by minimizing the dissimilarity between the input images and the associated digitally reconstructed radiographs of the learned models together with regularization terms encoding the strain energy of the forward deformation and the smoothness of the inverse deformation. Comprehensive experiments conducted on images of cadaveric femurs and on clinical datasets demonstrate the efficacy of the present approach.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Percutaneous needle intervention based on PET/CT images is effective, but exposes the patient to unnecessary radiation due to the increased number of CT scans required. Computer assisted intervention can reduce the number of scans, but requires handling, matching and visualization of two different datasets. While one dataset is used for target definition according to metabolism, the other is used for instrument guidance according to anatomical structures. No navigation systems capable of handling such data and performing PET/CT image-based procedures while following clinically approved protocols for oncologic percutaneous interventions are available. The need for such systems is emphasized in scenarios where the target can be located in different types of tissue such as bone and soft tissue. These two tissues require different clinical protocols for puncturing and may therefore give rise to different problems during the navigated intervention. Studies comparing the performance of navigated needle interventions targeting lesions located in these two types of tissue are not often found in the literature. Hence, this paper presents an optical navigation system for percutaneous needle interventions based on PET/CT images. The system provides viewers for guiding the physician to the target with real-time visualization of PET/CT datasets, and is able to handle targets located in both bone and soft tissue. The navigation system and the required clinical workflow were designed taking into consideration clinical protocols and requirements, and the system is thus operable by a single person, even during transition to the sterile phase. Both the system and the workflow were evaluated in an initial set of experiments simulating 41 lesions (23 located in bone tissue and 18 in soft tissue) in swine cadavers. We also measured and decomposed the overall system error into distinct error sources, which allowed for the identification of particularities involved in the process as well as highlighting the differences between bone and soft tissue punctures. An overall average error of 4.23 mm and 3.07 mm for bone and soft tissue punctures, respectively, demonstrated the feasibility of using this system for such interventions. The proposed system workflow was shown to be effective in separating the preparation from the sterile phase, as well as in keeping the system manageable by a single operator. Among the distinct sources of error, the user error based on the system accuracy (defined as the distance from the planned target to the actual needle tip) appeared to be the most significant. Bone punctures showed higher user error, whereas soft tissue punctures showed higher tissue deformation error.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Many research-based instruction strategies (RBISs) have been developed; their superior efficacy with respect to student learning has been demonstrated in many studies. Collecting and interpreting evidence about: 1) the extent to which electrical and computer engineering (ECE) faculty members are using RBISs in core, required engineering science courses, and 2) concerns that they express about using them, are important aspects of understanding how engineering education is evolving. The authors surveyed ECE faculty members, asking about their awareness and use of selected RBISs. The survey also asked what concerns ECE faculty members had about using RBISs. Respondent data showed that awareness of RBISs was very high, but estimates of use of RBISs, based on survey data, varied from 10% to 70%, depending on characteristics of the strategy. The most significant concern was the amount of class time that using an RBIS might take; efforts to increase use of RBISs must address this.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Simulation Automation Framework for Experiments (SAFE) is a project created to raise the level of abstraction in network simulation tools and thereby address issues that undermine credibility. SAFE incorporates best practices in network simulationto automate the experimental process and to guide users in the development of sound scientific studies using the popular ns-3 network simulator. My contributions to the SAFE project: the design of two XML-based languages called NEDL (ns-3 Experiment Description Language) and NSTL (ns-3 Script Templating Language), which facilitate the description of experiments and network simulationmodels, respectively. The languages provide a foundation for the construction of better interfaces between the user and the ns-3 simulator. They also provide input to a mechanism which automates the execution of network simulation experiments. Additionally,this thesis demonstrates that one can develop tools to generate ns-3 scripts in Python or C++ automatically from NSTL model descriptions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper we present a new population-based implant design methodology, which advances the state-of-the-art approaches by combining shape and bone quality information into the design strategy. The method enhances the mechanical stability of the fixation and reduces the intra-operative in-plane bending which might impede the functionality of the locking mechanism. The method is presented for the case of mandibular locking fixation plates, where the mandibular angle and the bone quality at screw locations are taken into account. Using computational anatomy techniques, the method automatically derives, from a set of computed tomography images, the mandibular angle and the bone thickness and intensity values at the path of every screw. An optimisation strategy is then used to optimise the two parameters of plate angle and screw position. Results for the new design are presented along with a comparison with a commercially available mandibular locking fixation plate. A statistically highly significant improvement was observed. Our experiments allowed us to conclude that an angle of 126° and a screw separation of 8mm is a more suitable design than the standard 120° and 9mm.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper proposes a sequential coupling of a Hidden Markov Model (HMM) recognizer for offline handwritten English sentences with a probabilistic bottom-up chart parser using Stochastic Context-Free Grammars (SCFG) extracted from a text corpus. Based on extensive experiments, we conclude that syntax analysis helps to improve recognition rates significantly.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper, we focus on the model for two types of tumors. Tumor development can be described by four types of death rates and four tumor transition rates. We present a general semi-parametric model to estimate the tumor transition rates based on data from survival/sacrifice experiments. In the model, we make a proportional assumption of tumor transition rates on a common parametric function but no assumption of the death rates from any states. We derived the likelihood function of the data observed in such an experiment, and an EM algorithm that simplified estimating procedures. This article extends work on semi-parametric models for one type of tumor (see Portier and Dinse and Dinse) to two types of tumors.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

OBJECTIVE: To design and evaluate a novel computer-assisted, fluoroscopy-based planning and navigation system for minimally invasive ventral spondylodesis of thoracolumbar fractures. MATERIALS AND METHODS: Instruments and an image intensifier are tracked with the SurgiGATE navigation system (Praxim-Medivision). Two fluoroscopic images, one acquired from anterior-posterior (AP) direction and the other from lateral-medial (LM) direction, are used for the complete procedure of planning and navigation. Both of them are calibrated with a custom-made software to recover their projection geometry and to co-register them to a common patient reference coordinate system, which is established by attaching an opto-electronically trackable dynamic reference base (DRB) on the operated vertebra. A bi-planar landmark reconstruction method is used to acquire deep-seated anatomical landmarks such that an intraoperative planning of graft bed can be interactively done. Finally, surgical actions such as the placement of the stabilization devices and the formation of the graft bed using a custom-made chisel are visualized to the surgeon by superimposing virtual instrument representations onto the acquired images. The distance between the instrument tip and each wall of the planned graft bed are calculated on the fly and presented to the surgeon so that the surgeon could formalize the graft bed exactly according to his/her plan. RESULTS: Laboratory studies on phantom and on 27 plastic vertebras demonstrate the high precision of the proposed navigation system. Compared with CT-based measurement, a mean error of 1.0 mm with a standard deviation of 0.1 mm was found. CONCLUSIONS: The proposed computer assisted, fluoroscopy-based planning and navigation system promises to increase the accuracy and reliability of minimally invasive ventral spondylodesis of thoracolumbar fractures.