926 resultados para cameras and camera accessories


Relevância:

40.00% 40.00%

Publicador:

Resumo:

"August 1961."

Relevância:

40.00% 40.00%

Publicador:

Resumo:

"16 December 1963."

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The kinematic mapping of a rigid open-link manipulator is a homomorphism between Lie groups. The homomorphisrn has solution groups that act on an inverse kinematic solution element. A canonical representation of solution group operators that act on a solution element of three and seven degree-of-freedom (do!) dextrous manipulators is determined by geometric analysis. Seven canonical solution groups are determined for the seven do! Robotics Research K-1207 and Hollerbach arms. The solution element of a dextrous manipulator is a collection of trivial fibre bundles with solution fibres homotopic to the Torus. If fibre solutions are parameterised by a scalar, a direct inverse funct.ion that maps the scalar and Cartesian base space coordinates to solution element fibre coordinates may be defined. A direct inverse pararneterisation of a solution element may be approximated by a local linear map generated by an inverse augmented Jacobian correction of a linear interpolation. The action of canonical solution group operators on a local linear approximation of the solution element of inverse kinematics of dextrous manipulators generates cyclical solutions. The solution representation is proposed as a model of inverse kinematic transformations in primate nervous systems. Simultaneous calibration of a composition of stereo-camera and manipulator kinematic models is under-determined by equi-output parameter groups in the composition of stereo-camera and Denavit Hartenberg (DH) rnodels. An error measure for simultaneous calibration of a composition of models is derived and parameter subsets with no equi-output groups are determined by numerical experiments to simultaneously calibrate the composition of homogeneous or pan-tilt stereo-camera with DH models. For acceleration of exact Newton second-order re-calibration of DH parameters after a sequential calibration of stereo-camera and DH parameters, an optimal numerical evaluation of DH matrix first order and second order error derivatives with respect to a re-calibration error function is derived, implemented and tested. A distributed object environment for point and click image-based tele-command of manipulators and stereo-cameras is specified and implemented that supports rapid prototyping of numerical experiments in distributed system control. The environment is validated by a hierarchical k-fold cross validated calibration to Cartesian space of a radial basis function regression correction of an affine stereo model. Basic design and performance requirements are defined for scalable virtual micro-kernels that broker inter-Java-virtual-machine remote method invocations between components of secure manageable fault-tolerant open distributed agile Total Quality Managed ISO 9000+ conformant Just in Time manufacturing systems.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Smart cameras allow pre-processing of video data on the camera instead of sending it to a remote server for further analysis. Having a network of smart cameras allows various vision tasks to be processed in a distributed fashion. While cameras may have different tasks, we concentrate on distributed tracking in smart camera networks. This application introduces various highly interesting problems. Firstly, how can conflicting goals be satisfied such as cameras in the network try to track objects while also trying to keep communication overhead low? Secondly, how can cameras in the network self adapt in response to the behavior of objects and changes in scenarios, to ensure continued efficient performance? Thirdly, how can cameras organise themselves to improve the overall network's performance and efficiency? This paper presents a simulation environment, called CamSim, allowing distributed self-adaptation and self-organisation algorithms to be tested, without setting up a physical smart camera network. The simulation tool is written in Java and hence allows high portability between different operating systems. Relaxing various problems of computer vision and network communication enables a focus on implementing and testing new self-adaptation and self-organisation algorithms for cameras to use.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Purpose: To assess the inter and intra observer variability of subjective grading of the retinal arterio-venous ratio (AVR) using a visual grading and to compare the subjectively derived grades to an objective method using a semi-automated computer program. Methods: Following intraocular pressure and blood pressure measurements all subjects underwent dilated fundus photography. 86 monochromatic retinal images with the optic nerve head centred (52 healthy volunteers) were obtained using a Zeiss FF450+ fundus camera. Arterio-venous ratios (AVR), central retinal artery equivalent (CRAE) and central retinal vein equivalent (CRVE) were calculated on three separate occasions by one single observer semi-automatically using the software VesselMap (ImedosSystems, Jena, Germany). Following the automated grading, three examiners graded the AVR visually on three separate occasions in order to assess their agreement. Results: Reproducibility of the semi-automatic parameters was excellent (ICCs: 0.97 (CRAE); 0.985 (CRVE) and 0.952 (AVR)). However, visual grading of AVR showed inter grader differences as well as discrepancies between subjectively derived and objectively calculated AVR (all p < 0.000001). Conclusion: Grader education and experience leads to inter-grader differences but more importantly, subjective grading is not capable to pick up subtle differences across healthy individuals and does not represent true AVR when compared with an objective assessment method. Technology advancements mean we no longer rely on opthalmoscopic evaluation but can capture and store fundus images with retinal cameras, enabling us to measure vessel calibre more accurately compared to visual estimation; hence it should be integrated in optometric practise for improved accuracy and reliability of clinical assessments of retinal vessel calibres. © 2014 Spanish General Council of Optometry.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Tumor functional volume (FV) and its mean activity concentration (mAC) are the quantities derived from positron emission tomography (PET). These quantities are used for estimating radiation dose for a therapy, evaluating the progression of a disease and also use it as a prognostic indicator for predicting outcome. PET images have low resolution, high noise and affected by partial volume effect (PVE). Manually segmenting each tumor is very cumbersome and very hard to reproduce. To solve the above problem I developed an algorithm, called iterative deconvolution thresholding segmentation (IDTS) algorithm; the algorithm segment the tumor, measures the FV, correct for the PVE and calculates mAC. The algorithm corrects for the PVE without the need to estimate camera's point spread function (PSF); also does not require optimizing for a specific camera. My algorithm was tested in physical phantom studies, where hollow spheres (0.5-16 ml) were used to represent tumors with a homogeneous activity distribution. It was also tested on irregular shaped tumors with a heterogeneous activity profile which were acquired using physical and simulated phantom. The physical phantom studies were performed with different signal to background ratios (SBR) and with different acquisition times (1-5 min). The algorithm was applied on ten clinical data where the results were compared with manual segmentation and fixed percentage thresholding method called T50 and T60 in which 50% and 60% of the maximum intensity respectively is used as threshold. The average error in FV and mAC calculation was 30% and -35% for 0.5 ml tumor. The average error FV and mAC calculation were ~5% for 16 ml tumor. The overall FV error was ∼10% for heterogeneous tumors in physical and simulated phantom data. The FV and mAC error for clinical image compared to manual segmentation was around -17% and 15% respectively. In summary my algorithm has potential to be applied on data acquired from different cameras as its not dependent on knowing the camera's PSF. The algorithm can also improve dose estimation and treatment planning.^

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this thesis, we introduce DeReEs-4v, an algorithm for unsupervised and automatic registration of two video frames captured depth-sensing cameras. DeReEs-4V receives two RGBD video streams from two depth-sensing cameras arbitrary located in an indoor space that share a minimum amount of 25% overlap between their captured scenes. The motivation of this research is to employ multiple depth-sensing cameras to enlarge the field of view and acquire a more complete and accurate 3D information of the environment. A typical way to combine multiple views from different cameras is through manual calibration. However, this process is time-consuming and may require some technical knowledge. Moreover, calibration has to be repeated when the location or position of the cameras change. In this research, we demonstrate how DeReEs-4V registration can be used to find the transformation of the view of one camera with respect to the other at interactive rates. Our algorithm automatically finds the 3D transformation to match the views from two cameras, requires no human interference, and is robust to camera movements while capturing. To validate this approach, a thorough examination of the system performance under different scenarios is presented. The system presented here supports any application that might benefit from the wider field-of-view provided by the combined scene from both cameras, including applications in 3D telepresence, gaming, people tracking, videoconferencing and computer vision.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Situational awareness is achieved naturally by the human senses of sight and hearing in combination. Automatic scene understanding aims at replicating this human ability using microphones and cameras in cooperation. In this paper, audio and video signals are fused and integrated at different levels of semantic abstractions. We detect and track a speaker who is relatively unconstrained, i.e., free to move indoors within an area larger than the comparable reported work, which is usually limited to round table meetings. The system is relatively simple: consisting of just 4 microphone pairs and a single camera. Results show that the overall multimodal tracker is more reliable than single modality systems, tolerating large occlusions and cross-talk. System evaluation is performed on both single and multi-modality tracking. The performance improvement given by the audio–video integration and fusion is quantified in terms of tracking precision and accuracy as well as speaker diarisation error rate and precision–recall (recognition). Improvements vs. the closest works are evaluated: 56% sound source localisation computational cost over an audio only system, 8% speaker diarisation error rate over an audio only speaker recognition unit and 36% on the precision–recall metric over an audio–video dominant speaker recognition method.