915 resultados para asymptotic optimality
Resumo:
Depuis le séminaire H. Cartan de 1954-55, il est bien connu que l'on peut trouver des éléments de torsion arbitrairement grande dans l'homologie entière des espaces d'Eilenberg-MacLane K(G,n) où G est un groupe abélien non trivial et n>1. L'objectif majeur de ce travail est d'étendre ce résultat à des H-espaces possédant plus d'un groupe d'homotopie non trivial. Dans le but de contrôler précisément le résultat de H. Cartan, on commence par étudier la dualité entre l'homologie et la cohomologie des espaces d'Eilenberg-MacLane 2-locaux de type fini. On parvient ainsi à raffiner quelques résultats qui découlent des calculs de H. Cartan. Le résultat principal de ce travail peut être formulé comme suit. Soit X un H-espace ne possédant que deux groupes d'homotopie non triviaux, tous deux finis et de 2-torsion. Alors X n'admet pas d'exposant pour son groupe gradué d'homologie entière réduite. On construit une large classe d'espaces pour laquelle ce résultat n'est qu'une conséquence d'une caractéristique topologique, à savoir l'existence d'un rétract faible X K(G,n) pour un certain groupe abélien G et n>1. On généralise également notre résultat principal à des espaces plus compliqués en utilisant la suite spectrale d'Eilenberg-Moore ainsi que des méthodes analytiques faisant apparaître les nombres de Betti et leur comportement asymptotique. Finalement, on conjecture que les espaces qui ne possédent qu'un nombre fini de groupes d'homotopie non triviaux n'admettent pas d'exposant homologique. Ce travail contient par ailleurs la présentation de la « machine d'Eilenberg-MacLane », un programme C++ conçu pour calculer explicitement les groupes d'homologie entière des espaces d'Eilenberg-MacLane. <br/><br/>By the work of H. Cartan, it is well known that one can find elements of arbitrarilly high torsion in the integral (co)homology groups of an Eilenberg-MacLane space K(G,n), where G is a non-trivial abelian group and n>1. The main goal of this work is to extend this result to H-spaces having more than one non-trivial homotopy groups. In order to have an accurate hold on H. Cartan's result, we start by studying the duality between homology and cohomology of 2-local Eilenberg-MacLane spaces of finite type. This leads us to some improvements of H. Cartan's methods in this particular case. Our main result can be stated as follows. Let X be an H-space with two non-vanishing finite 2-torsion homotopy groups. Then X does not admit any exponent for its reduced integral graded (co)homology group. We construct a wide class of examples for which this result is a simple consequence of a topological feature, namely the existence of a weak retract X K(G,n) for some abelian group G and n>1. We also generalize our main result to more complicated stable two stage Postnikov systems, using the Eilenberg-Moore spectral sequence and analytic methods involving Betti numbers and their asymptotic behaviour. Finally, we investigate some guesses on the non-existence of homology exponents for finite Postnikov towers. We conjecture that Postnikov pieces do not admit any (co)homology exponent. This work also includes the presentation of the "Eilenberg-MacLane machine", a C++ program designed to compute explicitely all integral homology groups of Eilenberg-MacLane spaces. <br/><br/>Il est toujours difficile pour un mathématicien de parler de son travail. La difficulté réside dans le fait que les objets qu'il étudie sont abstraits. On rencontre assez rarement un espace vectoriel, une catégorie abélienne ou une transformée de Laplace au coin de la rue ! Cependant, même si les objets mathématiques sont difficiles à cerner pour un non-mathématicien, les méthodes pour les étudier sont essentiellement les mêmes que celles utilisées dans les autres disciplines scientifiques. On décortique les objets complexes en composantes plus simples à étudier. On dresse la liste des propriétés des objets mathématiques, puis on les classe en formant des familles d'objets partageant un caractère commun. On cherche des façons différentes, mais équivalentes, de formuler un problème. Etc. Mon travail concerne le domaine mathématique de la topologie algébrique. Le but ultime de cette discipline est de parvenir à classifier tous les espaces topologiques en faisant usage de l'algèbre. Cette activité est comparable à celle d'un ornithologue (topologue) qui étudierait les oiseaux (les espaces topologiques) par exemple à l'aide de jumelles (l'algèbre). S'il voit un oiseau de petite taille, arboricole, chanteur et bâtisseur de nids, pourvu de pattes à quatre doigts, dont trois en avant et un, muni d'une forte griffe, en arrière, alors il en déduira à coup sûr que c'est un passereau. Il lui restera encore à déterminer si c'est un moineau, un merle ou un rossignol. Considérons ci-dessous quelques exemples d'espaces topologiques: a) un cube creux, b) une sphère et c) un tore creux (c.-à-d. une chambre à air). a) b) c) Si toute personne normalement constituée perçoit ici trois figures différentes, le topologue, lui, n'en voit que deux ! De son point de vue, le cube et la sphère ne sont pas différents puisque ils sont homéomorphes: on peut transformer l'un en l'autre de façon continue (il suffirait de souffler dans le cube pour obtenir la sphère). Par contre, la sphère et le tore ne sont pas homéomorphes: triturez la sphère de toutes les façons (sans la déchirer), jamais vous n'obtiendrez le tore. Il existe un infinité d'espaces topologiques et, contrairement à ce que l'on serait naïvement tenté de croire, déterminer si deux d'entre eux sont homéomorphes est très difficile en général. Pour essayer de résoudre ce problème, les topologues ont eu l'idée de faire intervenir l'algèbre dans leurs raisonnements. Ce fut la naissance de la théorie de l'homotopie. Il s'agit, suivant une recette bien particulière, d'associer à tout espace topologique une infinité de ce que les algébristes appellent des groupes. Les groupes ainsi obtenus sont appelés groupes d'homotopie de l'espace topologique. Les mathématiciens ont commencé par montrer que deux espaces topologiques qui sont homéomorphes (par exemple le cube et la sphère) ont les même groupes d'homotopie. On parle alors d'invariants (les groupes d'homotopie sont bien invariants relativement à des espaces topologiques qui sont homéomorphes). Par conséquent, deux espaces topologiques qui n'ont pas les mêmes groupes d'homotopie ne peuvent en aucun cas être homéomorphes. C'est là un excellent moyen de classer les espaces topologiques (pensez à l'ornithologue qui observe les pattes des oiseaux pour déterminer s'il a affaire à un passereau ou non). Mon travail porte sur les espaces topologiques qui n'ont qu'un nombre fini de groupes d'homotopie non nuls. De tels espaces sont appelés des tours de Postnikov finies. On y étudie leurs groupes de cohomologie entière, une autre famille d'invariants, à l'instar des groupes d'homotopie. On mesure d'une certaine manière la taille d'un groupe de cohomologie à l'aide de la notion d'exposant; ainsi, un groupe de cohomologie possédant un exposant est relativement petit. L'un des résultats principaux de ce travail porte sur une étude de la taille des groupes de cohomologie des tours de Postnikov finies. Il s'agit du théorème suivant: un H-espace topologique 1-connexe 2-local et de type fini qui ne possède qu'un ou deux groupes d'homotopie non nuls n'a pas d'exposant pour son groupe gradué de cohomologie entière réduite. S'il fallait interpréter qualitativement ce résultat, on pourrait dire que plus un espace est petit du point de vue de la cohomologie (c.-à-d. s'il possède un exposant cohomologique), plus il est intéressant du point de vue de l'homotopie (c.-à-d. il aura plus de deux groupes d'homotopie non nuls). Il ressort de mon travail que de tels espaces sont très intéressants dans le sens où ils peuvent avoir une infinité de groupes d'homotopie non nuls. Jean-Pierre Serre, médaillé Fields en 1954, a montré que toutes les sphères de dimension >1 ont une infinité de groupes d'homotopie non nuls. Des espaces avec un exposant cohomologique aux sphères, il n'y a qu'un pas à franchir...
Resumo:
This study offers a statistical analysis of the persistence of annual profits across a sample of firms from different European Union (EU) countries. To this end, a Bayesian dynamic model has been used which enables the annual behaviour of those profits to be broken down into a permanent structural component on the one hand and a transitory component on the other, while also distinguishing between general effects affecting the industry as a whole to which each firm belongs and specific effects affecting each firm in particular. This break down enables the relative importance of those fundamental components to be evaluated. The data analysed come from a sample of 23,293 firms in EU countries selected from the AMADEUS data-base. The period analysed ran from 1999 to 2007 and 21 sectors were analysed, chosen in such a way that there was a sufficiently large number of firms in each country*sector combination for the industry effects to be estimated accurately enough for meaningful comparisons to be made by sector and country. The analysis has been conducted by sector and by country from a Bayesian perspective, thus making the study more flexible and realistic since the estimates obtained do not depend on asymptotic results. In general terms, the study finds that, although the industry effects are significant, more important are the specific effects. That importance varies depending on the sector or the country in which the firm carries out its activity. The influence of firm effects accounts for more than 90% of total variation and display a significantly lower degree of persistence, with adjustment speeds oscillating around 51.1%. However, this pattern is not homogeneous but depends on the sector and country analysed. Industry effects have a more marginal importance, being significantly more persistent, with adjustment speeds oscillating around 10% with this degree of persistence being more homogeneous at both country and sector levels.
Resumo:
Evoluutioalgoritmit ovat viime vuosina osoittautuneet tehokkaiksi menetelmiksi globaalien optimointitehtävien ratkaisuun. Niiden vahvuutena on etenkin yleiskäyttöisyys ja kyky löytää globaali ratkaisu juuttumatta optimoitavan tavoitefunktion paikallisiin optimikohtiin. Tässä työssä on tavoitteena kehittää uusi, normaalijakaumaan perustuva mutaatio-operaatio differentiaalievoluutioalgoritmiin, joka on eräs uusimmista evoluutiopohjaisista optimointialgoritmeista. Menetelmän oletetaan vähentävän entisestään sekä populaation ennenaikaisen suppenemisen, että algoritmin tilojen juuttumisen riskiä ja se on teoreettisesti osoitettavissa suppenevaksi. Tämä ei päde alkuperäisen differentiaalievoluution tapauksessa, koska on voitu osoittaa, että sen tilanmuutokset voivat pienellä todennäköisyydellä juuttua. Työssä uuden menetelmän toimintaa tarkastellaan kokeellisesti käyttäen testiongelmina monirajoiteongelmia. Rajoitefunktioiden käsittelyyn käytetään Jouni Lampisen kehittämää, Pareto-optimaalisuuden periaatteeseen perustuvaa menetelmää. Samalla saadaan kerättyä lisää kokeellista näyttöä myös tämän menetelmän toiminnasta. Kaikki käytetyt testiongelmat kyettiin ratkaisemaan sekä alkuperäisellä differentiaalievoluutiolla, että uutta mutaatio-operaatiota käyttävällä versiolla. Uusi menetelmä osoittautui kuitenkin luotettavammaksi sellaisissa tapauksissa, joissa alkuperäisellä algoritmilla oli vaikeuksia. Lisäksi useimmat ongelmat kyettiin ratkaisemaan luotettavasti pienemmällä populaation koolla kuin alkuperäistä differentiaalievoluutiota käytettäessä. Uuden menetelmän käyttö myös mahdollistaa paremmin sellaisten kontrolliparametrien käytön, joilla hausta saadaan rotaatioinvariantti. Laskennallisesti uusi menetelmä on hieman alkuperäistä differentiaalievoluutiota raskaampi ja se tarvitsee yhden kontrolliparametrin enemmän. Uusille kontrolliparametreille määritettiin kuitenkin mahdollisimman yleiskäyttöiset arvot, joita käyttämällä on mahdollista ratkaista suuri joukko erilaisia ongelmia.
Resumo:
In this paper we provide a formal account for underapplication of vowel reduction to schwa in Majorcan Catalan loanwords and learned words. On the basis of the comparison of these data with those concerning productive derivation and verbal inflection, which show analogous patterns, in this paper we also explore the existing and not yet acknowledged correlation between those processes that exhibit a particular behaviour in the loanword phonology with respect to the native phonology of the language, those processes that show lexical exceptions and those processes that underapply due to morphological reasons. In light of the analysis of the very same data and taking into account the aforementioned correlation, we show how there might exist a natural diachronic relation between two kinds of Optimality Theory constraints which are commonly used but, in principle, mutually exclusive: positional faithfulness and contextual markedness constraints. Overall, phonological productivity is proven to be crucial in three respects: first, as a context of the grammar, given that «underapplication» is systematically found in what we call the productive phonology of the dialect (including loanwords, learned words, productive derivation and verbal inflection); second, as a trigger or blocker of processes, in that the productivity or the lack of productivity of a specific process or constraint in the language is what explains whether it is challenged or not in any of the depicted situations, and, third, as a guiding principle which can explain the transition from the historical to the synchronic phonology of a linguistic variety.
Resumo:
Diplomityössä on käsitelty uudenlaisia menetelmiä riippumattomien komponenttien analyysiin(ICA): Menetelmät perustuvat colligaatioon ja cross-momenttiin. Colligaatio menetelmä perustuu painojen colligaatioon. Menetelmässä on käytetty kahden tyyppisiä todennäköisyysjakaumia yhden sijasta joka perustuu yleiseen itsenäisyyden kriteeriin. Työssä on käytetty colligaatio lähestymistapaa kahdella asymptoottisella esityksellä. Gram-Charlie ja Edgeworth laajennuksia käytetty arvioimaan todennäköisyyksiä näissä menetelmissä. Työssä on myös käytetty cross-momentti menetelmää joka perustuu neljännen asteen cross-momenttiin. Menetelmä on hyvin samankaltainen FastICA algoritmin kanssa. Molempia menetelmiä on tarkasteltu lineaarisella kahden itsenäisen muuttajan sekoituksella. Lähtö signaalit ja sekoitetut matriisit ovattuntemattomia signaali lähteiden määrää lukuunottamatta. Työssä on vertailtu colligaatio menetelmään ja sen modifikaatioita FastICA:an ja JADE:en. Työssä on myös tehty vertailu analyysi suorituskyvyn ja keskusprosessori ajan suhteen cross-momenttiin perustuvien menetelmien, FastICA:n ja JADE:n useiden sekoitettujen parien kanssa.
Resumo:
We present computer simulations of a simple bead-spring model for polymer melts with intramolecular barriers. By systematically tuning the strength of the barriers, we investigate their role on the glass transition. Dynamic observables are analyzed within the framework of the mode coupling theory (MCT). Critical nonergodicity parameters, critical temperatures, and dynamic exponents are obtained from consistent fits of simulation data to MCT asymptotic laws. The so-obtained MCT λ-exponent increases from standard values for fully flexible chains to values close to the upper limit for stiff chains. In analogy with systems exhibiting higher-order MCT transitions, we suggest that the observed large λ-values arise form the interplay between two distinct mechanisms for dynamic arrest: general packing effects and polymer-specific intramolecular barriers. We compare simulation results with numerical solutions of the MCT equations for polymer systems, within the polymer reference interaction site model (PRISM) for static correlations. We verify that the approximations introduced by the PRISM are fulfilled by simulations, with the same quality for all the range of investigated barrier strength. The numerical solutions reproduce the qualitative trends of simulations for the dependence of the nonergodicity parameters and critical temperatures on the barrier strength. In particular, the increase in the barrier strength at fixed density increases the localization length and the critical temperature. However the qualitative agreement between theory and simulation breaks in the limit of stiff chains. We discuss the possible origin of this feature.
Resumo:
We study the interplay between the effects of surface anisotropy and dipolar interactions in monodisperse assemblies of nanomagnets with oriented anisotropy. We derive asymptotic formulas for the assembly magnetization, taking into account temperature, applied field, core and surface anisotropy, and dipolar interparticle interactions. We find that the interplay between surface anisotropy and dipolar interactions is well described by the analytical expression of the assembly magnetization derived here: the overall sign of the product of the two parameters governing the surface and the dipolar contributions determines whether intrinsic and collective terms compete or have synergistic effects on the magnetization. This is illustrated by the magnetization curves of γ-Fe2O3 nanoparticle assemblies in the low concentration limit.
Resumo:
We consider robust parametric procedures for univariate discrete distributions, focusing on the negative binomial model. The procedures are based on three steps: ?First, a very robust, but possibly inefficient, estimate of the model parameters is computed. ?Second, this initial model is used to identify outliers, which are then removed from the sample. ?Third, a corrected maximum likelihood estimator is computed with the remaining observations. The final estimate inherits the breakdown point (bdp) of the initial one and its efficiency can be significantly higher. Analogous procedures were proposed in [1], [2], [5] for the continuous case. A comparison of the asymptotic bias of various estimates under point contamination points out the minimum Neyman's chi-squared disparity estimate as a good choice for the initial step. Various minimum disparity estimators were explored by Lindsay [4], who showed that the minimum Neyman's chi-squared estimate has a 50% bdp under point contamination; in addition, it is asymptotically fully efficient at the model. However, the finite sample efficiency of this estimate under the uncontaminated negative binomial model is usually much lower than 100% and the bias can be strong. We show that its performance can then be greatly improved using the three step procedure outlined above. In addition, we compare the final estimate with the procedure described in
Resumo:
One of the more challenging tasks in the understanding of dynamical properties of models on top of complex networks is to capture the precise role of multiplex topologies. In a recent paper, Gómez et al. [ Phys. Rev. Lett. 110 028701 (2013)], some of the authors proposed a framework for the study of diffusion processes in such networks. Here, we extend the previous framework to deal with general configurations in several layers of networks and analyze the behavior of the spectrum of the Laplacian of the full multiplex. We derive an interesting decoupling of the problem that allow us to unravel the role played by the interconnections of the multiplex in the dynamical processes on top of them. Capitalizing on this decoupling we perform an asymptotic analysis that allow us to derive analytical expressions for the full spectrum of eigenvalues. This spectrum is used to gain insight into physical phenomena on top of multiplex, specifically, diffusion processes and synchronizability.
Resumo:
Background: In longitudinal studies where subjects experience recurrent incidents over a period of time, such as respiratory infections, fever or diarrhea, statistical methods are required to take into account the within-subject correlation. Methods: For repeated events data with censored failure, the independent increment (AG), marginal (WLW) and conditional (PWP) models are three multiple failure models that generalize Cox"s proportional hazard model. In this paper, we revise the efficiency, accuracy and robustness of all three models under simulated scenarios with varying degrees of within-subject correlation, censoring levels, maximum number of possible recurrences and sample size. We also study the methods performance on a real dataset from a cohort study with bronchial obstruction. Results: We find substantial differences between methods and there is not an optimal method. AG and PWP seem to be preferable to WLW for low correlation levels but the situation reverts for high correlations. Conclusions: All methods are stable in front of censoring, worsen with increasing recurrence levels and share a bias problem which, among other consequences, makes asymptotic normal confidence intervals not fully reliable, although they are well developed theoretically.
Resumo:
Fetal MRI reconstruction aims at finding a high-resolution image given a small set of low-resolution images. It is usually modeled as an inverse problem where the regularization term plays a central role in the reconstruction quality. Literature has considered several regularization terms s.a. Dirichlet/Laplacian energy [1], Total Variation (TV)based energies [2,3] and more recently non-local means [4]. Although TV energies are quite attractive because of their ability in edge preservation, standard explicit steepest gradient techniques have been applied to optimize fetal-based TV energies. The main contribution of this work lies in the introduction of a well-posed TV algorithm from the point of view of convex optimization. Specifically, our proposed TV optimization algorithm for fetal reconstruction is optimal w.r.t. the asymptotic and iterative convergence speeds O(1/n(2)) and O(1/root epsilon), while existing techniques are in O(1/n) and O(1/epsilon). We apply our algorithm to (1) clinical newborn data, considered as ground truth, and (2) clinical fetal acquisitions. Our algorithm compares favorably with the literature in terms of speed and accuracy.
Resumo:
In this thesis the structure and properties of imprecise quantum measurements are investigated. The starting point for this investigation is the representation of a quantum observable as a normalized positive operator measure. A general framework to describe measurement inaccuracy is presented. Requirements for accurate measurements are discussed, and the relation of inaccuracy to some optimality criteria is studied. A characterization of covariant observables is given in the case when they are imprecise versions of a sharp observable. Also the properties of such observables are studied. The case of position and momentum observables is studied. All position and momentum observables are characterized, and the joint positionmomentum measurements are discussed.
Resumo:
We propose a new kernel estimation of the cumulative distribution function based on transformation and on bias reducing techniques. We derive the optimal bandwidth that minimises the asymptotic integrated mean squared error. The simulation results show that our proposed kernel estimation improves alternative approaches when the variable has an extreme value distribution with heavy tail and the sample size is small.
Resumo:
A Monte Carlo simulation study of the vacancy-assisted domain growth in asymmetric binary alloys is presented. The system is modeled using a three-state ABV Hamiltonian which includes an asymmetry term. Our simulated system is a stoichiometric two-dimensional binary alloy with a single vacancy which evolves according to the vacancy-atom exchange mechanism. We obtain that, compared to the symmetric case, the ordering process slows down dramatically. Concerning the asymptotic behavior it is algebraic and characterized by the Allen-Cahn growth exponent x51/2. The late stages of the evolution are preceded by a transient regime strongly affected by both the temperature and the degree of asymmetry of the alloy. The results are discussed and compared to those obtained for the symmetric case.
Resumo:
The known properties of diffusion on fractals are reviewed in order to give a general outlook of these dynamic processes. After that, we propose a description developed in the context of the intrinsic metric of fractals, which leads us to a differential equation able to describe diffusion in real fractals in the asymptotic regime. We show that our approach has a stronger physical justification than previous works on this field. The most important result we present is the introduction of a dependence on time and space for the conductivity in fractals, which is deduced by scaling arguments and supported by computer simulations. Finally, the diffusion equation is used to introduce the possibility of reaction-diffusion processes on fractals and analyze their properties. Specifically, an analytic expression for the speed of the corresponding travelling fronts, which can be of great interest for application purposes, is derived