998 resultados para astrophysics jets
Resumo:
We report on a new measurement of the branching ratio B(K(L) -> pi(0)gamma gamma) using the KTeV detector. We reconstruct 1982 events with an estimated background of 608, that results in B(K(L) -> pi(0)gamma gamma)=(1.29 +/- 0.03(stat) +/- 0.05(syst)) x 10(-6). We also measure the parameter, a(V), which characterizes the strength of vector meson exchange terms in this decay. We find a(V) = -0.31 +/- 0.05(stat) +/- 0.07(syst). These results utilize the full KTeV data set collected from 1997 to 2000 and supersede earlier KTeV measurements of the branching ratio and a(V).
Resumo:
We present precise tests of CP and CPT symmetry based on the full data set of K -> pi pi decays collected by the KTeV experiment at Fermi National Accelerator Laboratory during 1996, 1997, and 1999. This data set contains 16 x 10(6) K -> pi(0)pi(0) and 69 x 10(6) K -> pi(+)pi(-) decays. We measure the direct CP violation parameter Re(epsilon'/epsilon) = (19.2 +/- 2.1) x 10(-4). We find the K(L) -> K(S) mass difference Delta m = (5270 +/- 12) x 10(6) (h) over tilde s(-1) and the K(S) lifetime tau(S) = (89.62 +/- 0.05) x 10(-12) s. We also measure several parameters that test CPT invariance. We find the difference between the phase of the indirect CP violation parameter epsilon and the superweak phase: phi(epsilon) - phi(SW) =(0.40 +/- 0.56)degrees. We measure the difference of the relative phases between the CP violating and CP conserving decay amplitudes for K -> pi(+)pi(-) (phi(+-)) and for K -> pi(0)pi(0) (phi(00)): Delta phi = (0.30 +/- 0.35)degrees. From these phase measurements, we place a limit on the mass difference between K(0) and (K) over bar (0): Delta M < 4.8 x 10(-19) GeV/c(2) at 95% C.L. These results are consistent with those of other experiments, our own earlier measurements, and CPT symmetry.
Resumo:
We use the boundary effective theory approach to thermal field theory in order to calculate the pressure of a system of massless scalar fields with quartic interaction. The method naturally separates the infrared physics, and is essentially nonperturbative. To lowest order, the main ingredient is the solution of the free Euler-Lagrange equation with nontrivial (time) boundary conditions. We derive a resummed pressure, which is in good agreement with recent calculations found in the literature, following a very direct and compact procedure.
Resumo:
The PHENIX experiment at the Relativistic Heavy Ion Collider has measured the invariant differential cross section for production of K(S)(0), omega, eta', and phi mesons in p + p collisions at root s 200 GeV. Measurements of omega and phi production in different decay channels give consistent results. New results for the omega are in agreement with previously published data and extend the measured p(T) coverage. The spectral shapes of all hadron transverse momentum distributions measured by PHENIX are well described by a Tsallis distribution functional form with only two parameters, n and T, determining the high-p(T) and characterizing the low-p(T) regions of the spectra, respectively. The values of these parameters are very similar for all analyzed meson spectra, but with a lower parameter T extracted for protons. The integrated invariant cross sections calculated from the fitted distributions are found to be consistent with existing measurements and with statistical model predictions.
Resumo:
Measurements of double-helicity asymmetries in inclusive hadron production in polarized p + p collisions are sensitive to helicity-dependent parton distribution functions, in particular, to the gluon helicity distribution, Delta g. This study focuses on the extraction of the double-helicity asymmetry in eta production ((p) over right arrow + (p) over right arrow -> eta + X), the eta cross section, and the eta/pi(0) cross section ratio. The cross section and ratio measurements provide essential input for the extraction of fragmentation functions that are needed to access the helicity-dependent parton distribution functions.
Resumo:
We report the first measurement of transverse single-spin asymmetries in J/psi production from transversely polarized p + p collisions at root s = 200 GeV with data taken by the PHENIX experiment in 2006 and 2008. The measurement was performed over the rapidity ranges 1.2 < vertical bar y vertical bar < 2.2 and vertical bar y vertical bar < 0.35 for transverse momenta up to 6 GeV/c. J/psi production at the Relativistic Heavy Ion Collider is dominated by processes involving initial-state gluons, and transverse single-spin asymmetries of the J/psi can provide access to gluon dynamics within the nucleon. Such asymmetries may also shed light on the long-standing question in QCD of the J/psi production mechanism. Asymmetries were obtained as a function of J/psi transverse momentum and Feynman-x, with a value of -0.086 +/- 0.026(stat) +/- 0.003(syst) in the forward region. This result suggests possible nonzero trigluon correlation functions in transversely polarized protons and, if well defined in this reaction, a nonzero gluon Sivers distribution function.
Resumo:
Correlations of charged hadrons of 1< p(T) < 10 Gev/c with high pT direct photons and pi(0) mesons in the range 5< p(T) < 15 Gev/c are used to study jet fragmentation in the gamma + jet and dijet channels, respectively. The magnitude of the partonic transverse momentum, k(T), is obtained by comparing to a model incorporating a Gaussian kT smearing. The sensitivity of the associated charged hadron spectra to the underlying fragmentation function is tested and the data are compared to calculations using recent global fit results. The shape of the direct photon-associated hadron spectrum as well as its charge asymmetry are found to be consistent with a sample dominated by quark-gluon Compton scattering. No significant evidence of fragmentation photon correlated production is observed within experimental uncertainties.
Resumo:
We report the measurement of the transverse momentum dependence of inclusive J/psi polarization in p + p collisions at root s = 200 GeV performed by the PHENIX Experiment at the Relativistic Heavy Ion Collider. The J/psi polarization is studied in the helicity, Gottfried-Jackson, and Collins-Soper frames for p(T) < 5 GeV/c and vertical bar y vertical bar < 0.35. The polarization in the helicity and Gottfried-Jackson frames is consistent with zero for all transverse momenta, with a slight (1.8 sigma) trend towards longitudinal polarization for transverse momenta above 2 GeV/c. No conclusion is allowed due to the limited acceptance in the Collins-Soper frame and the uncertainties of the current data. The results are compared to observations for other collision systems and center of mass energies and to different quarkonia production models.
Resumo:
The PHENIX experiment presents results from the RHIC 2006 run with polarized p + p collisions at root s = 62.4 GeV, for inclusive pi(0) production at midrapidity. Unpolarized cross section results are measured for transverse momenta p(T) = 0.5 to 7 GeV/c. Next-to-leading order perturbative quantum chromodynamics calculations are compared with the data, and while the calculations are consistent with the measurements, next-to-leading logarithmic corrections improve the agreement. Double helicity asymmetries A(LL) are presented for p(T) = 1 to 4 GeV/c and probe the higher range of Bjorken x of the gluon (x(g)) with better statistical precision than our previous measurements at root s = 200 GeV. These measurements are sensitive to the gluon polarization in the proton for 0.06 < x(g) < 0.4.
Resumo:
Azimuthal angle (Delta phi) correlations are presented for a broad range of transverse momentum (0.4 < p(T) < 10 GeV/c) and centrality (0-92%) selections for charged hadrons from dijets in Au+Au collisions at root s(NN) = 200 GeV. With increasing p(T), the away-side Delta phi distribution evolves from a broad and relatively flat shape to a concave shape, then to a convex shape. Comparisons with p + p data suggest that the away-side distribution can be divided into a partially suppressed ""head"" region centered at Delta phi similar to pi, and an enhanced ""shoulder"" region centered at Delta phi similar to pi +/- 1.1. The p(T) spectrum for the associated hadrons in the head region softens toward central collisions. The spectral slope for the shoulder region is independent of centrality and trigger p(T). The properties of the near-side distributions are also modified relative to those in p + p collisions, reflected by the broadening of the jet shape in Delta phi and Delta eta, and an enhancement of the per-trigger yield. However, these modifications seem to be limited to p(T)less than or similar to 4 GeV/c, above which both the hadron pair shape and per-trigger yield become similar to p + p collisions. These observations suggest that both the away- and near-side distributions contain a jet fragmentation component which dominates for p(T) greater than or similar to 5 GeV/c and a medium-induced component which is important for p(T) less than or similar to 4 GeV/c. We also quantify the role of jets at intermediate and low p(T) through the yield of jet-induced pairs in comparison with binary scaled p + p pair yield. The yield of jet-induced pairs is suppressed at high pair proxy energy (sum of the p(T) magnitudes of the two hadrons) and is enhanced at low pair proxy energy. The former is consistent with jet quenching; the latter is consistent with the enhancement of soft hadron pairs due to transport of lost energy to lower p(T).
Resumo:
Azimuthal angle (Delta phi) correlations are presented for charged hadrons from dijets for 0.4 < p(T)< 10 GeV/c in Au+Au collisions at root s(NN)=200 GeV. With increasing p(T), the away-side distribution evolves from a broad and relatively flat shape to a concave shape, then to a convex shape. Comparisons to p+p data suggest that the away-side can be divided into a partially suppressed ""head"" region centered at Delta phi similar to pi and an enhanced ""shoulder"" region centered at Delta phi similar to pi +/- 1.1. The p(T) spectrum for the head region softens toward central collisions, consistent with the onset of jet quenching. The spectral slope for the shoulder region is independent of centrality and trigger p(T), which offers constraints on energy transport mechanisms and suggests that it contains the medium response to energetic jets.
Resumo:
We enlarge the usual D = 3 N = 1 supergraph techniques to include the case of (explicitly or spontaneously) broken supersymmetric gauge theories. To illustrate the utility of these techniques, we calculate the two-loop effective potential of the SQED(3) by using the tadpole and the vacuum bubble methods. In these methods, to investigate the possibility of supersymmetry breaking, the superfields must be shifted by theta(alpha) dependent classical superfields (vacuum expectation values), what implies in the explicit breakdown of supersymmetry in the intermediate steps of the calculation. Nevertheless, after studying the minimum of the resulting effective potential, we find that supersymmetry is conserved, while gauge symmetry is dynamically broken, with a mass generated for the gauge superfield.
Resumo:
In the context of the 1/N expansion, the validity of the Slavnov-Taylor identity relating three- and two-point functions for the 2 + 1-dimensional noncommutative CP(N-1) model is investigated, up to subleading 1/N order, in the Landau gauge.
Resumo:
The lightest supersymmetric particle may decay with branching ratios that correlate with neutrino oscillation parameters. In this case the CERN Large Hadron Collider (LHC) has the potential to probe the atmospheric neutrino mixing angle with sensitivity competitive to its low-energy determination by underground experiments. Under realistic detection assumptions, we identify the necessary conditions for the experiments at CERN's LHC to probe the simplest scenario for neutrino masses induced by minimal supergravity with bilinear R parity violation.
Resumo:
In extensions of the standard model with a heavy fourth generation, one important question is what makes the fourth-generation lepton sector, particularly the neutrinos, so different from the lighter three generations. We study this question in the context of models of electroweak symmetry breaking in warped extra dimensions, where the flavor hierarchy is generated by choosing the localization of the zero-mode fermions in the extra dimension. In this setup the Higgs sector is localized near the infrared brane, whereas the Majorana mass term is localized at the ultraviolet brane. As a result, light neutrinos are almost entirely Majorana particles, whereas the fourth-generation neutrino is mostly a Dirac fermion. We show that it is possible to obtain heavy fourth-generation leptons in regions of parameter space where the light neutrino masses and mixings are compatible with observation. We study the impact of these bounds, as well as the ones from lepton flavor violation, on the phenomenology of these models.