983 resultados para aryl hydrocarbon receptor nuclear translocator


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The activation of the silent endogenous progesterone receptor (PR) gene by 17-β-estradiol (E2) in cells stably transfected with estrogen receptor (ER) was used as a model system to study the mechanism of E2-induced transcription. The time course of E2-induced PR transcription rate was determined by nuclear run-on assays. No marked effect on specific PR gene transcription rates was detected at 0 and 1 h of E2 treatment. After 3 h of E2 treatment, the PR mRNA synthesis rate increased 2.0- ± 0.2-fold and continued to increase to 3.5- ± 0.4-fold by 24 h as compared with 0 h. The transcription rate increase was followed by PR mRNA accumulation. No PR mRNA was detectable at 0, 1, and 3 h of E2 treatment. PR mRNA accumulation was detected at 6 h of E2 treatment and continued to accumulate until 18 h, the longest time point examined. Interestingly, this slow and gradual transcription rate increase of the endogenous PR gene did not parallel binding of E2 to ER, which was maximized within 30 min. Furthermore, the E2–ER level was down-regulated to 15% at 3 h as compared with 30 min of E2 treatment and remained low at 24 h of E2 exposure. These paradoxical observations indicate that E2-induced transcription activation is more complicated than just an association of the occupied ER with the transcription machinery.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coactivators previously implicated in ligand-dependent activation functions by thyroid hormone receptor (TR) include p300 and CREB-binding protein (CBP), the steroid receptor coactivator-1 (SRC-1)-related family of proteins, and the multicomponent TR-associated protein (TRAP) complex. Here we show that two positive cofactors (PC2 and PC4) derived from the upstream stimulatory activity (USA) cofactor fraction act synergistically to mediate thyroid hormone (T3)-dependent activation either by TR or by a TR-TRAP complex in an in vitro system reconstituted with purified factors and DNA templates. Significantly, the TRAP-mediated enhancement of activation by TR does not require the TATA box-binding protein-associated factors of TFIID. Furthermore, neither the pleiotropic coactivators CBP and p300 nor members of the SRC-1 family were detected in either the TR-TRAP complex or the other components of the in vitro assay system. These results show that activation by TR at the level of naked DNA templates is enhanced by cooperative functions of the TRAP coactivators and the general coactivators PC2 and PC4, and they further indicate a potential functional redundancy between TRAPs and TATA box-binding protein-associated factors in TFIID. In conjunction with earlier studies on other nuclear receptor-interacting cofactors, the present study also suggests a multistep pathway, involving distinct sets of cofactors, for activation of hormone responsive genes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The peroxisome proliferator-activated receptors (PPARs) are nuclear hormone receptors that regulate glucose and lipid homeostasis. The PPARγ subtype plays a central role in the regulation of adipogenesis and is the molecular target for the 2,4-thiazolidinedione class of antidiabetic drugs. Structural studies have revealed that agonist ligands activate the PPARs through direct interactions with the C-terminal region of the ligand-binding domain, which includes the activation function 2 helix. GW0072 was identified as a high-affinity PPARγ ligand that was a weak partial agonist of PPARγ transactivation. X-ray crystallography revealed that GW0072 occupied the ligand-binding pocket by using different epitopes than the known PPAR agonists and did not interact with the activation function 2 helix. In cell culture, GW0072 was a potent antagonist of adipocyte differentiation. These results establish an approach to the design of PPAR ligands with modified biological activities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The intracellular Ca2+ receptor calmodulin (CaM) coordinates responses to extracellular stimuli by modulating the activities of its various binding proteins. Recent reports suggest that, in addition to its familiar functions in the cytoplasm, CaM may be directly involved in rapid signaling between cytoplasm and nucleus. Here we show that Ca2+-dependent nuclear accumulation of CaM can be reconstituted in permeabilized cells. Accumulation was blocked by M13, a CaM antagonist peptide, but did not require cytosolic factors or an ATP regenerating system. Ca2+-dependent influx of CaM into nuclei was not blocked by inhibitors of nuclear localization signal-mediated nuclear import in either permeabilized or intact cells. Fluorescence recovery after photobleaching studies of CaM in intact cells showed that influx is a first-order process with a rate constant similar to that of a freely diffusible control molecule (20-kDa dextran). Studies of CaM efflux from preloaded nuclei in permeablized cells revealed the existence of three classes of nuclear binding sites that are distinguished by their Ca2+-dependence and affinity. At high [Ca2+], efflux was enhanced by addition of a high affinity CaM-binding protein outside the nucleus. These data suggest that CaM diffuses freely through nuclear pores and that CaM-binding proteins in the nucleus act as a sink for Ca2+-CaM, resulting in accumulation of CaM in the nucleus on elevation of intracellular free Ca2+.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Various proteins with different biological activities have been observed to be translocated from the nucleus to the cytoplasm in an energy- and signal-dependent manner in eukaryotic cells. This nuclear export is directed by nuclear export signals (NESs), typically characterized by hydrophobic, primarily leucine, amino acid residues. Moreover, it has been shown that CRM1/exportin 1 is an export receptor for leucine-rich NESs. However, additional NES-interacting proteins have been described. In particular, eukaryotic initiation factor 5A (eIF-5A) has been shown to be a critical cellular cofactor for the nuclear export of the HIV type 1 (HIV-1) Rev trans-activator protein. In this study we compared the nuclear export activity of NESs of different origin. Microinjection of export substrates into the nucleus of somatic cells in combination with specific inhibitors indicated that specific nuclear export pathways exist for different NES-containing proteins. In particular, inhibition of eIF-5A blocked the nuclear export of NESs derived from the HIV-1 Rev and human T cell leukemia virus type I Rex trans-activators, whereas nucleocytoplasmic translocation of the protein kinase inhibitor-NES was unaffected. In contrast, however, inhibition of CRM1/exportin 1 blocked the nuclear export of all NES-containing proteins investigated. Our data confirm that CRM1/exportin 1 is a general export receptor for leucine-rich NESs and suggest that eIF-5A acts either upstream of CRM1/exportin 1 or forms a complex with the NES and CRM1/exportin 1 in the nucleocytoplasmic translocation of the HIV-1 Rev and human T cell leukemia virus type I Rex RNA export factors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Here, we describe the identification and characterization of a nuclear body (matrix-associated deacetylase body) whose formation and integrity depend on deacetylase activity. Typically, there are 20–40 0.5-μM bodies per nucleus, although the size and number can vary substantially. The structure appears to contain both class I and the recently described class II histone deacetylases (HDAC)5 and 7 along with the nuclear receptor corepressors SMRT (silencing mediator for retinoid and thyroid receptor) and N-CoR (nuclear receptor corepressor). Addition of the deacetylase inhibitors trichostatin A and sodium butyrate completely disrupt these nuclear bodies, providing a demonstration that the integrity of a nuclear body is enzyme dependent. We demonstrate that HDAC5 and 7 can associate with at least 12 distinct proteins, including several members of the NuRD and Sin3A repression complexes, and appear to define a new but related complex.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Peroxisome proliferator-activated receptor γ (PPARγ) is a nuclear hormone receptor that plays a key role in the differentiation of adipocytes. Activation of this receptor in liposarcomas and breast and colon cancer cells also induces cell growth inhibition and differentiation. In the present study, we show that PPARγ is expressed in human prostate adenocarcinomas and cell lines derived from these tumors. Activation of this receptor with specific ligands exerts an inhibitory effect on the growth of prostate cancer cell lines. Further, we show that prostate cancer and cell lines do not have intragenic mutations in the PPARγ gene, although 40% of the informative tumors have hemizygous deletions of this gene. Based on our preclinical data, we conducted a phase II clinical study in patients with advanced prostate cancer using troglitazone, a PPARγ ligand used for the treatment of type 2 diabetes. Forty-one men with histologically confirmed prostate cancer and no symptomatic metastatic disease were treated orally with troglitazone. An unexpectedly high incidence of prolonged stabilization of prostate-specific antigen was seen in patients treated with troglitazone. In addition, one patient had a dramatic decrease in serum prostate-specific antigen to nearly undetectable levels. These data suggest that PPARγ may serve as a biological modifier in human prostate cancer and its therapeutic potential in this disease should be further investigated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is evidence from both genetic and pharmacologic studies to suggest that the cyclooxygenase-2 (COX-2) enzyme plays a causal role in the development of colorectal cancer. However, little is known about the identity or role of the eicosanoid receptor pathways activated by COX-derived prostaglandins (PG). We previously have reported that COX-2-derived prostacyclin promotes embryo implantation in the mouse uterus via activation of the nuclear hormone receptor peroxisome proliferator-activated receptor (PPAR) δ. In light of the recent finding that PPARδ is a target of β-catenin transactivation, it is important to determine whether this signaling pathway is operative during the development of colorectal cancer. Analysis of PPARδ mRNA in matched normal and tumor samples revealed that expression of PPARδ, similar to COX-2, is up-regulated in colorectal carcinomas. In situ hybridization studies demonstrate that PPARδ is expressed in normal colon and localized to the epithelial cells at the very tips of the mucosal glands. In contrast, expression of PPARδ mRNA in colorectal tumors was more widespread with increased levels in transformed epithelial cells. Analysis of PPARδ and COX-2 mRNA in serial sections suggested they were colocalized to the same region within a tumor. Finally, transient transfection assays established that endogenously synthesized prostacyclin (PGI2) could serve as a ligand for PPARδ. In addition, the stable PGI2 analog, carbaprostacyclin, and a synthetic PPARδ agonist induced transactivation of endogenous PPARδ in human colon carcinoma cells. We conclude from these observations that PPARδ, similar to COX-2, is aberrantly expressed in colorectal tumors and that endogenous PPARδ is transcriptionally responsive to PGI2. However, the functional consequence of PPARδ activation in colon carcinogenesis still needs to be determined.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To identify the physiological functions of the retinoid-related orphan receptor γ (RORγ), a member of the nuclear receptor superfamily, mice deficient in RORγ function were generated by targeted disruption. RORγ−/− mice lack peripheral and mesenteric lymph nodes and Peyer's patches, indicating that RORγ expression is indispensable for lymph node organogenesis. Although the spleen is enlarged, its architecture is normal. The number of peripheral blood CD3+ and CD4+ lymphocytes is reduced 6- and 10-fold, respectively, whereas the number of circulating B cells is normal. The thymus of RORγ−/− mice contains 74.4% ± 8.9% fewer thymocytes than that of wild-type mice. Flow cytometric analysis showed a decrease in the CD4+CD8+ subpopulation. Terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling (TUNEL) staining demonstrated a 4-fold increase in apoptotic cells in the cortex of the thymus of RORγ−/− mice. The latter was supported by the observed increase in annexin V-positive cells. RORγ−/− thymocytes placed in culture exhibit a dramatic increase in the rate of “spontaneous” apoptosis. This increase is largely associated with CD4+CD8+ thymocytes and may, at least in part, be related to the greatly reduced level of expression of the anti-apoptotic gene Bcl-XL. Flow cytometric analysis demonstrated a 6-fold rise in the percentage of cells in the S phase of the cell cycle among thymocytes from RORγ−/− mice. Our observations indicate that RORγ is essential for lymphoid organogenesis and plays an important regulatory role in thymopoiesis. Our findings support a model in which RORγ negatively controls apoptosis in thymocytes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effects of 1,25-dihydroxyvitamin D3 [1,25-(OH)2D3] are mediated by the vitamin D receptor (VDR), a member of the nuclear receptor superfamily of transcriptional regulators. We have identified upstream exons of the human (h) VDR gene that are incorporated into variant transcripts, two of which encode N-terminal variant receptor proteins. Expression of the hVDR gene, which spans more than 60 kb and consists of at least 14 exons, is directed by two distinct promoters. A tissue-specific distal promoter generates unique transcripts in tissues involved in calcium regulation by 1,25-(OH)2D3 and can direct the expression of a luciferase reporter gene in a cell line-specific manner. These major N-terminal differences in hVDR transcripts, potentially resulting in structural differences in the expressed receptor, may contribute to cellular responsiveness to 1,25-(OH)2D3 through tissue differences in the regulation of VDR expression.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Progesterone (P) powerfully inhibits gonadotropin-releasing hormone (GnRH) secretion in ewes, as in other species, but the neural mechanisms underlying this effect remain poorly understood. Using an estrogen (E)-free ovine model, we investigated the immediate GnRH and luteinizing hormone (LH) response to acute manipulations of circulating P concentrations and whether this response was mediated by the nuclear P receptor. Simultaneous hypophyseal portal and jugular blood samples were collected over 36 hr: 0–12 hr, in the presence of exogenous P (P treatment begun 8 days earlier); 12–24 hr, P implant removed; 24–36 hr, P implant reinserted. P removal caused a significant rapid increase in the GnRH pulse frequency, which was detectable within two pulses (175 min). P insertion suppressed the GnRH pulse frequency even faster: the effect detectable within one pulse (49 min). LH pulsatility was modulated identically. The next two experiments demonstrated that these effects of P are mediated by the nuclear P receptor since intracerebroventricularly infused P suppressed LH release but 3α-hydroxy-5α-pregnan-20-one, which operates through the type A γ-aminobutyric acid receptor, was without effect and pretreatment with the P-receptor antagonist RU486 blocked the ability of P to inhibit LH. Our final study showed that P exerts its acute suppression of GnRH through an E-dependent system because the effects of P on LH secretion, lost after long-term E deprivation, are restored after 2 weeks of E treatment. Thus we demonstrate that P acutely inhibits GnRH through an E-dependent nuclear P-receptor system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Glucocorticoids exert multiple anti-inflammatory activities, one of which is the inhibition of transcription dependent on the nuclear factor (NF)-κB. It has been suggested that the effect of dexamethasone (DEX), a glucocorticoid analog, is attributed to an increased production of the inhibitory IκB molecule, which in turn would bind and remove activated, DNA-bound NF-κB complexes in the cell nucleus. Upon investigating DEX-mediated repression of interleukin-6 expression induced by tumor necrosis factor, DEX treatment was found to act directly on NF-κB-dependent transcription, without changing the expression level of IκB. Neither the mRNA of IκB nor the protein was significantly elevated by a combined treatment with tumor necrosis factor and DEX of murine endothelial or fibroblast cells. The DNA-binding activity of induced NF-κB also remained unchanged after stimulation of cells with DEX. Evidence for a direct nuclear mechanism of action was obtained by analysis of cell lines stably expressing a fusion protein between the DNA-binding domain of the yeast Gal4 protein and the transactivating p65 subunit of NF-κB. Expression of a Gal4-dependent luciferase reporter gene activated by this nuclear fusion protein was also strongly repressed after addition of DEX. Because the DNA-binding activity of the Gal4 fusion protein was not affected by DEX, it can be concluded that the reduction of gene activation was caused by interference of the activated glucocorticoid receptor with the transactivation potential of the NF-κB p65 subunit.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Parathyroid hormone-related protein (PTHrP) is a prohormone that is posttranslationally processed to a family of mature secretory forms, each of which has its own cognate receptor(s) on the cell surface that mediate the actions of PTHrP. In addition to being secreted via the classical secretory pathway and interacting with cell surface receptors in a paracrine/autocrine fashion, PTHrP appears to be able to enter the nucleus directly following translation and influence cellular events in an “intracrine” fashion. In this report, we demonstrate that PTHrP can be targeted to the nucleus in vascular smooth muscle cells, that this nuclear targeting is associated with a striking increase in mitogenesis, that this nuclear effect on proliferation is the diametric opposite of the effects of PTHrP resulting from interaction with cell surface receptors on vascular smooth muscle cells, and that the regions of the PTHrP sequence responsible for this nuclear targeting represent a classical bipartite nuclear localization signal. This report describes the activation of the cell cycle in association with nuclear localization of PTHrP in any cell type. These findings have important implications for the normal physiology of PTHrP in the many tissues which produce it, and suggest that gene delivery of PTHrP or modified variants may be useful in the management of atherosclerotic vascular disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Retinoic acid (RA) exerts diverse biological effects in the control of cell growth in embryogenesis and oncogenesis. These effects of RA are thought to be mediated by the nuclear retinoid receptors. Mannose-6-phosphate (M6P)/insulin-like growth factor-II (IGF-II) receptor is a multifunctional membrane glycoprotein that is known to bind both M6P and IGF-II and function primarily in the binding and trafficking of lysosomal enzymes, the activation of transforming growth factor-β, and the degradation of IGF-II. M6P/IGF-II receptor has recently been implicated in fetal development and carcinogenesis. Despite the functional similarities between RA and the M6P/IGF-II receptor, no direct biochemical link has been established. Here, we show that the M6P/IGF-II receptor also binds RA with high affinity at a site that is distinct from those for M6P and IGF-II, as identified by a photoaffinity labeling technique. We also show that the binding of RA to the M6P/IGF-II receptor enhances the primary functions of this receptor. The biological consequence of the interaction appears to be the suppression of cell proliferation and/or induction of apoptosis. These findings suggest that the M6P/IGF-II receptor mediates a RA response pathway that is important in cell growth regulation. This discovery of the interaction of RA with the M6P/IGF-II receptor may have important implications for our understanding of the roles of RA and the M6P/IGF-II receptor in development, carcinogenesis, and lysosomal enzyme-related diseases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Jun N-terminal kinases (JNKs) recently have been shown to be required for thymocyte apoptosis and T cell differentiation and/or proliferation. To investigate the molecular targets of JNK signaling in lymphoid cells, we used mice in which the serines phosphorylated by JNK in c-Jun were replaced by homologous recombination with alanines (junAA mice). Lymphocytes from these mice showed no phosphorylation of c-Jun in response to activation stimuli, whereas c-Jun was rapidly phosphorylated in wild-type cells. Despite the fact that c-jun is essential for early development, junAA mice develop normally; however, c-Jun N-terminal phosphorylation was required for efficient T cell receptor-induced and tumor necrosis factor-α-induced thymocyte apoptosis. In contrast, c-Jun phosphorylation by JNK is not required for T cell proliferation or differentiation. Because jnk2−/− T cells display a proliferation defect, we concluded that JNK2 must have other substrates required for lymphocyte function. Surprisingly, jnk2−/− T cells showed reduced NF-AT DNA-binding activity after activation. Furthermore, overexpression of JNK2 in Jurkat T cells strongly enhanced NF-AT-dependent transcription. These results demonstrate that JNK signaling differentially uses c-Jun and NF-AT as molecular effectors during thymocyte apoptosis and T cell proliferation.