967 resultados para androgen receptor gene
Resumo:
[ES] En este trabajo, hemos tratado de identificar, y poner a punto las técnicas necesarias para la cuantificación de los miRNAs asociados con el control post-transcripcional del receptor de andrógenos (AR) y el receptor de estrógenos (ER) en tumores de mama. Para ello, hemos usado las bases de datos publicadas en Internet. Además, comparamos la cantidad y la calidad del RNA total aislado (miRNA y mRNA) en 11 tumores de mama incluidos en parafina mediante el uso de dos kits comerciales.
Resumo:
Somatostatin ist ein Molekül mit multifunktinonellem Charakter, dem Neurotransmitter-, Neuromodulator- und (Neuro)-Hormoneigenschaften zugeschrieben werden. Gemäß seiner ubiquitären Verteilung in Geweben beeinflusst es Stoffwechsel- und Entwicklungsprozesse, bis hin zu Lern-und Gedächtnisleistungen. Diese Wirkungen resultieren aus dem lokalen und zeitlichen Zusammenspiel eines Liganden und fünf G-Protein gekoppelter Rezeptoren (SSTR1-5). Zur Charakterisierung der biologischen Bedeutung des Somatostatin-Systems im Gesamtorganismus wurde eine Mutationsanalyse einzelner Systemkomponenten durchgeführt. Sie umfaßte die Inaktivierung der Gene für das Somatostatin-Präpropeptid und die der Rezeptoren SSTR3 und SSTR4 durch Gene Targeting. Die entsprechenden Ausfallmutationen belegen: Weder die Rezeptoren 3 und 4, noch Somatostatin sind für das Überleben des Organismus unter Standardhaltungsbedingungen notwendig. Die entsprechenden Mauslinien zeigen keine unmittelbar auffälligen Einschränkungen ihrer Biologie. Die Somatostatin-Nullmaus wurde zum Hauptgegenstand einer detaillierten Untersuchung aufgrund der übergeordneten Position des Liganden in der Signalkaskade und verfügbaren Hinweisen zu seiner Funktion. Folgende Schlußfolgerungen konnten nach eingehender Analyse gezogen werden: Der Ausfall des Somatostatin-Gens hat erhöhte Plasmakonzentrationen an Wachstumshormon (GH) zur Konsequenz. Dies steht im Einklang mit der Rolle Somatostatins als hemmender Faktor der Wachstumshormon-Freisetzung, die in der Mutante aufgehoben ist. Durch die Somatostatin-Nullmaus wurde zudem deutlich: Somatostatin interagiert als wesentliches Bindeglied zwischen der Wachstums- und Streßachse. Permanent erhöhte Corticosteron-Werte in den Mutanten implizieren einen negativen tonischen Einfluß für die Sekretion von Glukocorticoiden in vivo. Damit zeigt die Knockout-Maus, daß Somatostatin normalerweise als ein entscheidendes inhibierendes Kontrollelement der Steroidfreisetzung fungiert. Verhaltensversuche offenbarten ein Defizit im motorischen Lernen. Somatostatin-Nullmäuse bleiben im Lernparadigma “Rotierender Stabtest” hinter ihren Artgenossen zurück ohne aber generell in Motorik oder Koordination eingeschränkt zu sein. Diese motorischen Lernvorgänge sind von einem funktionierenden Kleinhirn abhängig. Da Somatostatin und seine Rezeptoren kaum im adulten, wohl aber im sich entwickelnden Kleinhirn auftreten, belegt dieses Ergebnis die Funktion transient in der Entwicklung exprimierter Neuropeptide – eine lang bestehende, aber bislang experimentell nicht nachgewiesene Hypothese. Die Überprüfung weiterer physiologischer Parameter und Verhaltenskategorien unter Standard-Laborbedingunggen ergab keine sichtbaren Abweichungen im Vergleich zu Wildtyp-Mäusen. Damit steht nun ein Tiermodell zur weiterführenden Analyse für die Somatostatin-Forschung bereit: In endokrinologischen, elektrophysiologischen und verhaltens-biologischen Experimenten ist nun eine unmittelbare Korrelation selektiv mit dem Somatostatin-Peptid bzw. mit den Rezeptoren 3 und 4 aber auch in Kombination der Ausfallmutationen nach entsprechenden Kreuzungen möglich.
Resumo:
Therapies for the treatment of prostate cancer show several limitations, especially when the cancer metastasizes or acquires resistance to treatment. In addition, most of the therapies currently used entails the occurrence of serious side effects. A different therapeutic approach, more selective and less invasive with respect either to radio or to chemotherapy, is represented by the photodynamic therapy (PDT). The PDT is a treatment that makes use of photosensitive drugs: these agents are pharmacologically inactive until they are irradiated with light at an appropriate wavelength and in the presence of oxygen. The drug, activated by light, forms singlet oxygen, a highly reactive chemical species directly responsible for DNA damage, thus of cell death. In this thesis we present two synthetic strategies for the preparation of two new tri-component derivatives for photodynamic therapy of advanced prostate cancer, namely DRPDT1 and DRPDT2. Both derivatives are formed by three basic elements covalently bounded to each other: a specific ligand with high affinity for the androgen receptor, a suitably chosen spacer molecule and a photoactivated molecule. In particular, DRPDT2 differs from DRPDT1 from the nature of the AR ligand. In fact, in the case of DRPDT2 we used a synthetically engineered androgen receptor ligand able to photo-react even in the absence of oxygen, by delivering NO radical. The presence of this additional pharmacophore, together with the porphyrin, may ensure an additive/synergistic effect to the photo-stimulated therapy, which than may act both in the presence of oxygen and in hypoxic conditions. This approach represents the first example of multimodal photodynamic therapy for prostate cancer.
Resumo:
Come noto, il testosterone (T) gioca un ruolo importante in differenti funzioni fisiologiche. Il ruolo del T nelle donne è tuttavia largamente sconosciuto. Recenti studi riportano un ruolo del T nella modulazione della funzionalità sessuale femminile. SCOPO: Indagare gli effetti del T nelle donne, su parametri metabolici, ossei e composizione corporea e studiare gli effetti del T sulla proliferazione e innervazione della vagina. METODI: 16 soggetti FtM ovariectomizzati sono stati sottoposti a terapia con TU 1000 mg im + placebo o dutasteride. Alla settimana 0 e 54 sono stati valutati: parametri metabolici e composizione corporea. 16 campioni di tessuto vaginale ottenuti da soggetti FtM trattati con T, 16 donne PrM e 16 donne M sono stati analizzati. Sono stati valutati: morfologia, contenuto di glicogeno, espressione del Ki-67, recettori per estrogeni e androgeni ed innervazione. RISULTATI: La somministrazione di T in soggetti FtM determina aumento del colesterolo LDL e riduzione delle HDL. L’HOMA si riduce significativamente nel gruppo TU e tende ad aumentare nel gruppo TU+D. L’ematocrito aumenta. BMI, WHR e grasso tendono a ridursi, la massa magra ad aumentare. Non riportiamo cambiamenti del metabolismo osseo. Nel tessuto vaginale di FtM osserviamo perdita della normale architettura dell’epitelio. La somministrazione di T determina riduzione della proliferazione cellulare. I recettori per E e il PGP 9.5 sono significativamente ridotti nei FtM. La presenza di recettori per A è dimostrata nello stroma e nell’epitelio. L’espressione di AR si riduce con l’età e non cambia con la terapia con T nella mucosa, mentre aumenta nello stroma dopo somministrazione di T. CONCLUSIONI: Non riportiamo effetti avversi maggiori dopo somministrazione di T. La terapia con T determina ridotta proliferazione dell’epitelio vaginale. I recettori per AR sono presenti sia nello stroma che nell’epitelio. T aumenta l’espressione di AR nello stroma.
Resumo:
Tumor is a lesion that may be formed by an abnormal growth of neoplastic cells. Many factors increase the risk of cancer and different targets are involved in tumor progression. Within this thesis, we have addressed two different biological targets, independently connected with tumor formation, e.g. Hsp90 and androgen receptor. The ATP-dependent chaperone Hsp90 is responsible for the conformational maturation and the renaturation of proteins. “Client” proteins are associated with the cancer hallmarks, as cell proliferation and tumor progression. Consequently, Hsp90 has evolved into promising anticancer target. Over the past decade, radicicol has been identified as potential anticancer agent targeting Hsp90, but it is not active in vivo. With that aim of obtaining radicicol-related derivatives, we developed the design and synthesis of new chalcones analogs. Chalcones, which are abundant in edible plants, own a diverse array of pharmacological activities and are considered a versatile scaffold for drug design. Antiproliferative assays and western blot analysis on the new compounds showed that some of those display an interesting cytotoxic effect and the ability to modulate Hsp90 client proteins expression. Androgen Receptor (AR) hypersensitivity plays crucial role in prostate cancer, which progression is stimulated by androgens. The therapy consists in a combination of surgical or chemical castration, along with antiandrogens treatment. Casodex® (bicalutamide), is the most widespread antiandrogen used in clinic. However, hormonal therapy is time-limited since many patients develop resistance. Commercially available antiandrogens show a common scaffold, e.g. two substituted aromatic rings linked by a linear or a cyclic spacer. With the aim of obtaining novel pure AR antagonists, we developed a new synthetic methodology, which allowed us to introduce, as linker between two suitably chosen aromatic rings, a triazole moiety. Preliminary data suggest that the herein reported new molecules generally decrease PSA expression, thus confirming their potential AR antagonistic activity.
Resumo:
In birds, causes and consequences of variation in maternally-derived steroids in egg yolk have been the subject of intense experimentation. Many studies have quantified or manipulated testosterone ("T") and one of its immediate precursors, androstenedione ("A4") - often lumping the two steroids as "androgens" and treating them as functionally equivalent. However, yolk A4 is deposited in substantially higher concentrations than T, binds only weakly to the androgen receptor, and is readily converted into either T or estrone by steroidogenic enzymes present during embryonic development. Thus it may not be appropriate to assume that A4 has the same effect as T. In addition, A4's metabolic fate is likely to differ between females and males. The goals of this study were to examine the sex-specific uptake and metabolism of yolk A4 and consequences of elevated levels of yolk A4 on development and behavior of domestic chicks. Eggs were injected with 2mu Ci of tritiated androstenedione; radioactivity was detected in all tissues of day 7 and day 16 embryos and found in both aqueous and organics phases of day 7 yolk, with no difference between sexes. A second set of eggs was injected with 125ng of A4. A4 increased growth of morphological traits (tarsus, beak) in females, but not males. A4 males had smaller combs than controls; there was no treatment effect in females. A4 reduced tonic immobility behavior in both sexes. The results of this study illustrate the importance of distinguishing both between androgens and between sexes when investigating avian endocrine maternal effects. Copyright 2013 Elsevier Inc. All rights reserved.
Resumo:
Increased serum bile salt levels have been associated to a single-nucleotide polymorphism in the bile salt export pump (BSEP; ABCB11) in several acquired cholestatic liver diseases but there is little evidence in alcoholic liver disease (ALD). Furthermore, a crosstalk between vitamin D and bile acid synthesis has recently been discovered. Whether this crosstalk has an influence on the course of ALD is unclear to date. Our aim was to analyse the role of genetic polymorphisms in BSEP and the vitamin D receptor gene (NR1I1) on the emergence of cirrhosis in patients with ALD. Therefore, 511 alcoholic patients (131 with cirrhosis and 380 without cirrhosis) underwent ABCB11 genotyping (rs2287622). Of these, 321 (131 with cirrhosis and 190 without cirrhosis) were also tested for NR1I1 polymorphisms (bat-haplotype: BsmI rs1544410, ApaI rs7975232 and TaqI rs731236). Frequencies of ABCB11 and NR1I1 genotypes and haplotypes were compared between alcoholic patients with and without cirrhosis and correlated to serum bile salt, bilirubin and aspartate aminotransferase levels in those with cirrhosis. Frequencies of ABCB11 and NR1I1 genotypes and haplotypes did not differ between the two subgroups and no significant association between genotypes/haplotypes and liver function tests could be determined for neither polymorphism. We conclude that ABCB11 and NR1I1 polymorphisms are obviously not associated with development of cirrhosis in patients with ALD.
Resumo:
Castration is the standard therapy for advanced prostate cancer (PC). Although this treatment is initially effective, tumors invariably relapse as incurable, castration-resistant PC (CRPC). Adaptation of androgen-dependent PC cells to an androgen-depleted environment or selection of pre-existing, CRPC cells have been proposed as mechanisms of CRPC development. Stem cell (SC)-like PC cells have been implicated not only as tumor initiating/maintaining in PC but also as tumor-reinitiating cells in CRPC. Recently, castration-resistant cells expressing the NK3 homeobox 1 (Nkx3-1) (CARNs), the other luminal markers cytokeratin 18 (CK18) and androgen receptor (AR), and possessing SC properties, have been found in castrated mouse prostate and proposed as the cell-of-origin of CRPC. However, the human counterpart of CARNs has not been identified yet. Here, we demonstrate that in the human PC xenograft BM18, pre-existing SC-like and neuroendocrine (NE) PC cells are selected by castration and survive as totally quiescent. SC-like BM18 cells, displaying the SC markers aldehyde dehydrogenase 1A1 or NANOG, coexpress the luminal markers NKX3-1, CK18, and a low level of AR (AR(low)) but not basal or NE markers. These CR luminal SC-like cells, but not NE cells, reinitiate BM18 tumor growth after androgen replacement. The AR(low) seems to mediate directly both castration survival and tumor reinitiation. This study identifies for the first time in human PC SC-/CARN-like cells that may represent the cell-of-origin of tumor reinitiation as CRPC. This finding will be fundamental for refining the hierarchy among human PC cancer cells and may have important clinical implications.
Resumo:
After an average of 18-36 months under androgen suppression therapy by surgical castration, LHRH, and steroidal or non-steroidal antiandrogens, almost all patients with metastatic prostate cancer show PSA progression as a sign of androgen-independent but still androgen-sensitive tumor growth. Our understanding and the treatment of such castration-resistant prostate cancer has changed markedly. The introduction of new drugs like abiraterone and MDV3100 has shown that prostate cancer progression even in the"hormone-refractory" stage is driven by androgen receptor signaling. Based on this information the question of whether androgen deprivation therapy in castration-resistant prostate cancer should be continued or not is still of relevance. This review gives a critical overview of the literature and current guideline recommendations.
Resumo:
To investigate whether alterations in RNA editing (an enzymatic base-specific change to the RNA sequence during primary transcript formation from DNA) of neurotransmitter receptor genes and of transmembrane ion channel genes play a role in human temporal lobe epilepsy (TLE), this exploratory study analyzed 14 known cerebral editing sites in RNA extracted from the brain tissue of 41 patients who underwent surgery for mesial TLE, 23 with hippocampal sclerosis (MTLE+HS). Because intraoperatively sampled RNA cannot be obtained from healthy controls and the best feasible control is identically sampled RNA from patients with a clinically shorter history of epilepsy, the primary aim of the study was to assess the correlation between epilepsy duration and RNA editing in the homogenous group of MTLE+HS. At the functionally relevant I/V site of the voltage-gated potassium channel Kv1.1, an inverse correlation of RNA editing was found with epilepsy duration (r=-0.52, p=0.01) but not with patient age at surgery, suggesting a specific association with either the epileptic process itself or its antiepileptic medication history. No significant correlations were found between RNA editing and clinical parameters at other sites within glutamate receptor or serotonin 2C receptor gene transcripts. An "all-or-none" (≥95% or ≤5%) editing pattern at most or all sites was discovered in 2 patients. As a secondary part of the study, RNA editing was also analyzed as in the previous literature where up to now, few single editing sites were compared with differently obtained RNA from inhomogenous patient groups and autopsies, and by measuring editing changes in our mouse model. The present screening study is first to identify an editing site correlating with a clinical parameter, and to also provide an estimate of the possible effect size at other sites, which is a prerequisite for power analysis needed in planning future studies.
Resumo:
The cause of porcine congenital progressive ataxia and spastic paresis (CPA) is unknown. This severe neuropathy manifests shortly after birth and is lethal. The disease is inherited as a single autosomal recessive allele, designated cpa. In a previous study, we demonstrated close linkage of cpa to microsatellite SW902 on porcine chromosome 3 (SSC3), which corresponds syntenically to human chromosome 2. This latter chromosome contains ion channel genes (Ca(2+), K(+) and Na(+)), a cholinergic receptor gene and the spastin (SPG4) gene, which cause human epilepsy and ataxia when mutated. We mapped porcine CACNB4, KCNJ3, SCN2A and CHRNA1 to SSC15 and SPG4 to SSC3 with the INRA-Minnesota porcine radiation hybrid panel (IMpRH) and we sequenced the entire open reading frames of CACNB4 and SPG4 without finding any differences between healthy and affected piglets. An anti-epileptic drug treatment with ethosuximide did not change the severity of the disease, and pigs with CPA did not exhibit the corticospinal tract axonal degeneration found in humans suffering from hereditary spastic paraplegia, which is associated with mutations in SPG4. For all these reasons, the hypothesis that CACNB4, CHRNA1, KCNJ3, SCN2A or SPG4 are identical with the CPA gene was rejected.
Resumo:
A heterozygous missense mutation in the GH-1 gene converting codon 77 from arginine (R) to cysteine (C), which was previously reported to have some GH antagonistic effect, was identified in a Syrian family. The index patient, a boy, was referred for assessment of his short stature (-2.5 SDS) at the age of 6 years. His mother and grandfather were also carrying the same mutation, but did not differ in adult height from the other unaffected family members. Hormonal examination in all affected subjects revealed increased basal GH, low IGF-I concentrations, and subnormal IGF-I response in generation test leading to the diagnosis of partial GH insensitivity. However, GH receptor gene (GHR) sequencing demonstrated no abnormalities. As other family members carrying the GH-R77C form showed similar alterations at the hormonal level, but presented with normal final height, no GH therapy was given to the boy, but he was followed through his pubertal development which was delayed. At the age of 20 years he reached his final height, which was normal within his parental target height. Functional characterization of the GH-R77C, assessed through activation of Jak2/Stat5 pathway, revealed no differences in the bioactivity between wild-type-GH (wt-GH) and GH-R77C. Detailed structural analysis indicated that the structure of GH-R77C, in terms of disulfide bond formation, is almost identical to that of the wt-GH despite the introduced mutation (Cys77). Previous studies from our group demonstrated a reduced capability of GH-R77C to induce GHR/GH-binding protein (GHBP) gene transcription rate when compared with wt-GH. Therefore, reduced GHR/GHBP expression might well be the possible cause for the partial GH insensitivity found in our patients. In addition, this group of patients deserve further attention because they could represent a distinct clinical entity underlining that an altered GH peptide may also have a direct impact on GHR/GHBP gene expression causing partial GH insensitivity. This might be responsible for the delay of growth and pubertal development. Finally, we clearly demonstrate that GH-R77C is not invariably associated with short stature, but that great care needs to be taken in ascribing growth failure to various heterozygous mutations affecting the GH-IGF axis and that careful functional studies are mandatory.
Resumo:
The progression of hormone responsive to hormone refractory prostate cancer poses a major clinical challenge in the successful treatment of prostate cancer. The hormone refractory prostate cancer cells exhibit resistance not only to castrate levels of testosterone, but also to other therapeutic modalities and hence become lethal. Currently, there is no effective treatment available for managing this cancer. These observations underscore the urgency to investigate mechanism(s) that contribute to the progression of hormone-responsive to hormone-refractory prostate cancer and to target them for improved clinical outcomes. Tissue transglutaminase (TG2) is a multifunctional pro-inflammatory protein involved in diverse physiological processes such as inflammation, tissue repair, and wound healing. Its expression is also implicated in pathological conditions such as cancer and fibrosis. Interestingly, we found that the androgen-independent prostate cancer cell lines, which lacked androgen receptor (AR) expression, contained high basal levels of tissue transglutaminase. Inversely, the cell lines that expressed androgen receptor lacked transglutaminase expression. This attracted our attention to investigate the possible role this protein may play in the progression of prostate cancer, especially in view of recent observations that its expression is linked with increased invasion, metastasis, and drug resistance in multiple cancer cell types. The results we obtained were rather surprising and revealed that stable expression of tissue transglutaminase in androgen-sensitive LNCaP prostate cancer cells rendered these cells independent of androgen for growth and survival by silencing the AR expression. The AR silencing in TG2 expressing cells (TG2-infected LNCaP and PC-3 cells) was due to TG2-induced activation of the inflammatory nuclear transcription factor-kB (NF-kB). Thus, TG2 induced NF-kB was found to directly bind to the AR promoter. Importantly, TG2 protein was specifically recruited to the AR promoter in complex with the p65 subunit of NF-kB. Moreover, TG2 expressing LNCaP and PC-3 cells exhibited epithelial-to-mesenchymal transition, as evidenced by gain of mesenchymal (such as fibronectin, vimentin, etc.) and loss of epithelial markers (such as E-cadherin, b-catenin). Taken together, these results suggested a new function for TG2 and revealed a novel mechanism that is responsible for the progression of prostate cancer to the aggressive hormone-refractory phenotype.
Resumo:
Microbial exposures and sex hormones exert potent effects on autoimmune diseases, many of which are more prevalent in women. We demonstrate that early-life microbial exposures determine sex hormone levels and modify progression to autoimmunity in the nonobese diabetic (NOD) mouse model of type 1 diabetes (T1D). Colonization by commensal microbes elevated serum testosterone and protected NOD males from T1D. Transfer of gut microbiota from adult males to immature females altered the recipient's microbiota, resulting in elevated testosterone and metabolomic changes, reduced islet inflammation and autoantibody production, and robust T1D protection. These effects were dependent on androgen receptor activity. Thus, the commensal microbial community alters sex hormone levels and regulates autoimmune disease fate in individuals with high genetic risk.
Resumo:
White markings and spotting patterns in animal species are thought to be a result of the domestication process. They often serve for the identification of individuals but sometimes are accompanied by complex pathological syndromes. In the Swiss Franches-Montagnes horse population, white markings increased vastly in size and occurrence during the past 30 years, although the breeding goal demands a horse with as little depigmented areas as possible. In order to improve selection and avoid more excessive depigmentation on the population level, we estimated population parameters and breeding values for white head and anterior and posterior leg markings. Heritabilities and genetic correlations for the traits were high (h(2) > 0.5). A strong positive correlation was found between the chestnut allele at the melanocortin-1-receptor gene locus and the extent of white markings. Segregation analysis revealed that our data fit best to a model including a polygenic effect and a biallelic locus with a dominant-recessive mode of inheritance. The recessive allele was found to be the white trait-increasing allele. Multilocus linkage disequilibrium analysis allowed the mapping of the putative major locus to a chromosomal region on ECA3q harboring the KIT gene.