983 resultados para alternative fuel
Resumo:
Titanium carbide (TiC) is an electrically conducting refractory interstitial compound possessing several unique properties. A cost-effective, efficient and non-Pt electrocatalyst based on TiC is explored and the multi-functionality of TiC towards various electrochemical reactions that are of significant interest in low temperature fuel cells is studied. Ameliorated activities towards oxygen reduction reaction (ORR) and borohydride oxidation are observed with TiC-carbon composites. High sensitivity and selectivity towards ORR have been demonstrated with very good methanol tolerance. The charge transfer interactions between TiC and carbon seem to play a vital role in the improved activity as compared to their individual counterparts. The present study opens up a way to realize completely Pt-free borohydride fuel cell architecture.
Resumo:
The paper addresses the effect of particle size on tar generation in a fixed bed gasification system. Pyrolysis, a diffusion limited process, depends on the heating rate and the surface area of the particle influencing the release of the volatile fraction leaving behind residual char. The flaming time has been estimated for different biomass samples. It is found that the flaming time for wood flakes is almost one fourth than that of coconut shells for same equivalent diameter fuel samples. The particle density of the coconut shell is more than twice that of wood spheres, and almost four times compared with wood flakes; having a significant influence on the flaming time. The ratio of the particle surface area to that of an equivalent diameter is nearly two times higher for flakes compared with wood pieces. Accounting for the density effect, on normalizing with density of the particle, the flaming rate is double in the case of wood flakes or coconut shells compared with the wood sphere for an equivalent diameter. This is due to increased surface area per unit volume of the particle. Experiments are conducted on estimation of tar content in the raw gas for wood flakes and standard wood pieces. It is observed that the tar level in the raw gas is about 80% higher in the case of wood flakes compared with wood pieces. The analysis suggests that the time for pyrolysis is lower with a higher surface area particle and is subjected to fast pyrolysis process resulting in higher tar fraction with low char yield. Increased residence time with staged air flow has a better control on residence time and lower tar in the raw gas. (C) 2014 International Energy Initiative. Published by Elsevier Inc. All rights reserved.
Resumo:
In the present study, a detailed visualization of the transport of fuel film has been performed in a small carburetted engine with a transparent manifold at the exit of the carburettor. The presence of fuel film is observed significantly on the lower half of the manifold at idling, while at load conditions, the film is found to be distributed all throughout the manifold walls. Quantitative measurement of the fuel film in a specially-designed manifold of square cross section has also been performed using the planar laser-induced fluorescence (PLIF) technique. The measured fuel film thickness is observed to be of the order of 1 nun at idling, and in the range of 0.1 to 0.4 mm over the range of load and speed studied. These engine studies are complemented by experiments conducted in a carburettor rig to study the state of the fuel exiting the carburettor. Laser-based Particle/Droplet Image Analysis (PDIA) technique is used to identify fuel droplets and ligaments and estimate droplet diameters. At a throttle position corresponding to idling, the fuel exiting the carburettor is found to consist of very fine droplets of size less than 15 mu m and large fuel ligaments associated with length scales of the order of 500 mu m and higher. For a constant pressure difference across the carburettor, the fuel consists of droplets with an SMD of the order of 30 mu m. Also, the effect of liquid fuel film on the cold start HC emissions is studied. Based on the understanding obtained from these studies, strategies such as manifold heating and varying carburettor main jet nozzle diameter are implemented. These are observed to reduce emissions under both idling and varying load conditions.
Resumo:
The investigation involves preparation and photoluminescence properties of CeO2:Eu3+ (1-11 mol%) nano phosphors by eco-friendly green combustion route using Euphorbia tirucalli plant latex as fuel. The final product was characterized by powder X-ray diffraction (PXRD), Scanning electron microcopy (SEM) and Transmission electron microscopy (TEM). The PXRD and SEM results reveals cubic fluorite phase with flaky structure. The crystallite size obtained from TEM was found to be similar to 20-25 nm, which was comparable to W-H plots and Scherrer's method. Photoluminescence (PL) emission of all the Eu3+ doped samples shows characteristic bands arising from the transitions of D-5(0) -> F-5(J) (J = 0, 1, 2, 3, 4) manifolds under excitation at 373 and 467 nm excitation. The D-5(0) -> F-7(2) (613 nm) transition often dominate the emission spectra, indicating that the Eu3+ cations occupy a site without inversion center. The highest PL intensity was recorded for 9 mol% Eu3+ ions with 5 ml latex. PL quenching was observed upon further increase in Eu3+ concentration. The international commission on illumination (CIE) chromaticity co-ordinates were calculated from emission spectra, the values (x, y) were very close to national television system committee (NTSC) standard values of pure red emission. The results demonstrate that the synthesized phosphor material could be very useful for display applications. Further, the phosphor material prepared by this method was found to be non toxic, environmental friendly and could be a potential alternative to economical routes. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
The current work reports optical diagnostic measurements of fuel-air mixing and vortex structure in a single cavity trapped vortex combustor (TVC). Specifically, the mixture fraction using acetone PLIF technique in the non-reacting flow, and PIV measurements in the reacting flow are reported for the first time in trapped vortex combustors. The fuel-air momentum flux ratio, where the air momentum corresponds to that entering the cavity through a specially-incorporated flow guide vane, is used to characterize the mixing. The acetone PLIF experiments show that at high momentum flux ratios, the fuel-air mixing in the cavity is very minimal and is enhanced as the momentum flux ratio reduces, due to a favourable vortex formation in the cavity. Stoichiometric mixture fraction surfaces show that the mixing causes the reaction surfaces to shift from non-premixed to partially-premixed stratified mixtures. PIV measurements conducted in the non-reacting flow in the cavity further reinforce this observation. The scalar dissipation rates of mixture fraction were compared with the contours of RMS of fluctuating velocity and showed very good agreement. The regions of maximum mixing are observed to be along the fuel air interface. Reacting flow Ply measurements which differ substantially from the non-reacting cases primarily because of the heat release from combustion and the resulting gas expansion show that the vortex is displaced from the centre of the cavity towards the guide vane. Overall, the measurements show interesting features of the flow including the presence of the dual cavity structure and lead to a clear understanding of the underlying physics of the cavity flow highlighting the importance of the fuel-air momentum ratio parameter. (C) 2014 Elsevier Inc. All rights reserved.
Resumo:
Eu2+ ion doped into a suitable host results in an efficient luminophore with engineering relevance; however stabilizing this ion in a host is known to be a challenge. Here we report a novel approach for the synthesis of efficient CaAl2O4 phosphor containing Eu2+ luminophore and Cr3+ activator. CaAl2O4:Eu2+, Cr3+ is prepared by a solution combustion (SCS) method using (i) urea, (ii) oxalyl dihydrazide (ODH) and (iii) fuel-blend (in which overall fuel to oxidizer ratio (F/O) = 1). A Multi-channel thermocouple setup is used to measure the flame temperatures to study the nature of combustion of various fuel mixtures. The variation of adiabatic flame temperature is calculated theoretically for different urea/ODH mixture ratios according to thermodynamic concept and correlated with the observed flame temperatures. Blue emission of the CaAl2O4:Eu2+ phosphor is enhanced similar to 20 times using the fuel-blend approach. Using the observed reaction kinetics, and the known chemistry of smoldering type combustion, a mechanism is proposed for the observed stabilization of Eu2+ ion in the fuel-blend case. This also explains the observed improvement in blue light emission. We show that the right choice of the fuel ratio is essential for enhancing photoluminescence (PL) emission. The PL intensity is highest for ODH lean and urea rich combination (i.e. when the ratio of ODH:urea is 1:5); measured color purity is comparable to commercial blue phosphor, BAM:Eu2+. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
Use of fuel other than woody generally has been limited to rice husk and other residues are rarely tried as a fuel in a gasification system. With the availability of woody biomass in most countries like India, alternates fuels are being explored for sustainable supply of fuel. Use of agro residues has been explored after briquetting. There are few feedstock's like coconut fronts, maize cobs, etc, that might require lesser preprocessing steps compared to briquetting. The paper presents a detailed investigation into using coconut fronds as a fuel in an open top down draft gasification system. The fuel has ash content of 7% and was dried to moisture levels of 12 %. The average bulk density was found to be 230 kg/m3 with a fuel size particle of an average size 40 mm as compared to 350 kg/m3 for a standard wood pieces. A typical dry coconut fronds weighs about 2.5kgs and on an average 6 m long and 90 % of the frond is the petiole which is generally used as a fuel. The focus was also to compare the overall process with respect to operating with a typical woody biomass like subabul whose ash content is 1 %. The open top gasification system consists of a reactor, cooling and cleaning system along with water treatment. The performance parameters studied were the gas composition, tar and particulates in the clean gas, water quality and reactor pressure drop apart from other standard data collection of fuel flow rate, etc. The average gas composition was found to be CO 15 1.0 % H-2 16 +/- 1% CH4 0.5 +/- 0.1 % CO2 12.0 +/- 1.0 % and rest N2 compared to CO 19 +/- 1.0 % H-2 17 +/- 1.0 %, CH4 1 +/- 0.2 %, CO2 12 +/- 1.0 % and rest N2. The tar and particulate content in the clean gas has been found to be about 10 and 12 mg/m3 in both cases. The presence of high ash content material increased the pressure drop with coconut frond compared to woody biomass.
Resumo:
Food industries like biscuit and confectionary use significant amount of fossil fuel for thermal energy. Biscuit manufacturing in India is carried out both by organized and unorganized sector. The ratio of organized to unorganized sector is 60 : 40 (1). The total biscuit manufacturing in the organized sector India in 2008 was about 1.7 million metric tons (1). Accounting for the unorganized sector in India, the total biscuit manufacturing would have been about 2.9 million metric tons/annum. A typical biscuit baking is carried in a long tunnel kiln with varying temperature in different zones. Generally diesel is used to provide the necessary heat energy for the baking purpose, with temperature ranging from 190 C in the drying zone to about 300 C in the baking area and has to maintain in the temperature range of +/- 5 C. Typical oil consumption is about 40 litres per ton of biscuit production. The paper discusses the experience in substituting about 120 lts per hour kiln for manufacturing about 70 tons of biscuit daily. The system configuration consists of a 500 kg/hr gasification system comprising of a reactor, multicyclone, water scrubbers, and two blowers for maintaining the constant gas pressure in the header before the burners. Cold producer gas is piped to the oven located about 200 meters away from the gasifier. Fuel used in the gasification system is coconut shells. All the control system existing on the diesel burner has been suitably adapted for producer gas operation to maintain the total flow, A/F control so as to maintain the temperature. A total of 7 burners are used in different zones. Over 17000 hour of operation has resulted in replacing over 1800 tons of diesel over the last 30 months. The system operates for over 6 days a week with average operational hours of 160. It has been found that on an average 3.5 kg of biomass has replaced one liter of diesel.
Resumo:
Nonhomologous DNA end joining (NHEJ) is one of the major double-strand break (DSB) repair pathways in higher eukaryotes. Recently, it has been shown that alternative NHEJ (A-NHEJ) occurs in the absence of classical NHEJ and is implicated in chromosomal translocations leading to cancer. In the present study, we have developed a novel biochemical assay system utilizing DSBs flanked by varying lengths of microhomology to study microhomology-mediated alternative end joining (MMEJ). We show that MMEJ can operate in normal cells, when microhomology is present, irrespective of occurrence of robust classical NHEJ. Length of the microhomology determines the efficiency of MMEJ, 5 nt being obligatory. Using this biochemical approach, we show that products obtained are due to MMEJ, which is dependent on MRE11, NBS1, LIGASE III, XRCC1, FEN1 and PARP1. Thus, we define the enzymatic machinery and microhomology requirements of alternative NHEJ using a well-defined biochemical system.
Resumo:
A wireless fuel quantity indication system (FQIS) has been developed using an RFID-enabled sensing platform. The system comprises a fully passive tag, modified reader protocol, capacitive fuel probe, and auxiliary antenna for additional energy harvesting. Results of fluid testing show sensitivity to changes in fluid height of less than 0.25in. An RF-DC harvesting circuit was developed, which delivers up to 5dBm of input power through a remote radio frequency (RF) source. Testing was conducted in a loaded reverberation chamber to emulate the fuel tank environment. Results demonstrate feasibility of the remote source to power the sensor with less than 1W of maximum transmit power and under 100ms dwell time (100mW average power) into the tank. This indicates adequate coverage for large transport aircraft at safe operating levels with a sample rate of up to 1 sample/s.
Resumo:
In this paper, an alternative apriori and aposteriori formulation has been derived for the discrete linear quadratic regulator (DLQR) in a manner analogous to that used in the discrete Kalman filter. It has been shown that the formulation seamlessly fits into the available formulation of the DLQR and the equivalent terms in the existing formulation and the proposed formulation have been identified. Thereafter, the significance of this alternative formulation has been interpreted in terms of the sensitivity of the controller performances to any changes in the states or to changes in the control inputs. The implications of this alternative formulation to adaptive controller tuning have also been discussed.
Resumo:
Hydrogen, either in pure form or as a gaseous fuel mixture specie enhances the fuel conversion efficiency and reduce emissions in an internal combustion engine. This is due to the reduction in combustion duration attributed to higher laminar flame speeds. Hydrogen is also expected to increase the engine convective heat flux, attributed (directly or indirectly) to parameters like higher adiabatic flame temperature, laminar flame speed, thermal conductivity and diffusivity and lower flame quenching distance. These factors (adversely) affect the thermo-kinematic response and offset some of the benefits. The current work addresses the influence of mixture hydrogen fraction in syngas on the engine energy balance and the thermo-kinematic response for close to stoichiometric operating conditions. Four different bio-derived syngas compositions with fuel calorific value varying from 3.14 MJ/kg to 7.55 MJ/kg and air fuel mixture hydrogen fraction varying from 7.1% to 14.2% by volume are used. The analysis comprises of (a) use of chemical kinetics simulation package CHEMKIN for quantifying the thermo-physical properties (b) 0-D model for engine in-cylinder analysis and (c) in-cylinder investigations on a two-cylinder engine in open loop cooling mode for quantifying the thermo-kinematic response and engine energy balance. With lower adiabatic flame temperature for Syngas, the in-cylinder heat transfer analysis suggests that temperature has little effect in terms of increasing the heat flux. For typical engine like conditions (700 K and 25 bar at CR of 10), the laminar flame speed for syngas exceeds that of methane (55.5 cm/s) beyond mixture hydrogen fraction of 11% and is attributed to the increase in H based radicals. This leads to a reduction in the effective Lewis number and laminar flame thickness, potentially inducing flame instability and cellularity. Use of a thermodynamic model to assess the isolated influence of thermal conductivity and diffusivity on heat flux suggests an increase in the peak heat flux between 2% and 15% for the lowest (0.420 MW/m(2)) and highest (0.480 MW/m(2)) hydrogen containing syngas over methane (0.415 MW/m(2)) fueled operation. Experimental investigations indicate the engine cooling load for syngas fueled engine is higher by about 7% and 12% as compared to methane fueled operation; the losses are seen to increase with increasing mixture hydrogen fraction. Increase in the gas to electricity efficiency is observed from 18% to 24% as the mixture hydrogen fraction increases from 7.1% to 9.5%. Further increase in mixture hydrogen fraction to 14.2% results in the reduction of efficiency to 23%; argued due to the changes in the initial and terminal stages of combustion. On doubling of mixture hydrogen fraction, the flame kernel development and fast burn phase duration decrease by about 7% and 10% respectively and the terminal combustion duration, corresponding to 90%-98% mass burn, increases by about 23%. This increase in combustion duration arises from the cooling of the near wall mixture in the boundary layer attributed to the presence of hydrogen. The enhancement in engine cooling load and subsequent reduction in the brake thermal efficiency with increasing hydrogen fraction is evident from the engine energy balance along with the cumulative heat release profiles. Copyright (C) 2015, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
Resumo:
Autosomal recessive primary microcephaly (MCPH) is a rare neurodevelopmental disorder characterized by a pronounced reduction of brain volume and intellectual disability. A current model for the microcephaly phenotype invokes a stem cell proliferation and differentiation defect, which has moved the disease into the spotlight of stem cell biology and neurodevelopmental science. Homozygous mutations of the Cyclin-dependent kinase-5 regulatory subunit-associated protein 2 gene CDK5RAP2 are one genetic cause of MCPH. To further characterize the pathomechanism underlying MCPH, we generated a conditional Cdk5rap2 LoxP/hCMV Cre mutant mouse. Further analysis, initiated on account of a lack of a microcephaly phenotype in these mutant mice, revealed the presence of previously unknown splice variants of the Cdk5rap2 gene that are at least in part accountable for the lack of microcephaly in the mice.
Resumo:
Understanding the combustion characteristics of fuel droplets laden with energetic nanoparticles (NP) is pivotal for lowering ignition delay, reducing pollutant emissions and increasing the combustion efficiency in next generation combustors. In this study, first we elucidate the feedback coupling between two key interacting mechanisms, namely, secondary atomization and particle agglomeration; that govern the effective mass fraction of NPs within the droplet. Second, we show how the initial NP concentration modulates their relative dominance leading to a masterslave configuration. Secondary atomization of novel nanofuels is a crucial process since it enables an effective transport of dispersed NPs to the flame (a pre-requisite condition for NPs to burn). Contrarily, NP agglomeration at the droplet surface leads to shell formation thereby retaining NPs inside the droplet. In particular, we show that at dense concentrations shell formation (master process) dominates over secondary atomization (slave) while at dilute particle loading it is the high frequency bubble ejections (master) that disrupt shell formation (slave) through its rupture and continuous outflux of NPs. This results in distinct combustion residues at dilute and dense concentrations, thereby providing a method of manufacturing flame synthesized microstructures with distinct morphologies.