879 resultados para allosteric inhibition


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this study was to investigate the precise mechanism by which central a-adrenergic pathways modulate GH secretion in humans. In 10 normal subjects we compared the pattern of clonidine-induced GH release to that elicited by GH-releasing hormone (GHRH) given at a time of presumably similar responsiveness of the somatotrope. We also evaluated the effect of stimulation by GHRH (either endogenous, by administration of clonidine, or exogenous) on the GH response to a further exogenous GHRH stimulation. In 2 experiments the administration of clonidine (0.150 mg, orally) at 0 or 60 min was followed by a GHRH [GRF-(1-29); 1 µg/kg, iv] challenge at 180 min. In other experiments subjects received on separate occasions placebo or clonidine at 0 min, followed by GHRH at 60 min and again at 180 min. In a further experiment the administration of clonidine at 0 min was followed by 2 GHRH challenges (60 and 180 min later). The administration of clonidine 60 or 120 min, but not 180 min, before the GHRH bolus significantly (P <0.01) increased the GH responses to this challenge compared to those elicited by GHRH when given after placebo in a period of a similar somatotrope responsiveness. These, in turn, were significantly (P <0.05) higher than those elicited by clonidine alone. The close relationship between pre-GHRH plasma GH values and GHRH-elicited GH peaks, not observed for clonidine, was lost after pretreatment with this drug. These data indicate that clonidine was able to disrupt the intrinsic hypothalamic-somatotroph rhythm, suggesting that a-adrenergic pathways have a major inhibitory effect on somatostatin release. Our data also indicate that GH responses to a GHRH bolus administered 120 min after a prior GHRH challenge are dependent on two parameters: the intrinsic hypothalamic-somatotroph rhythm at the time of the second GHRH bolus, and the magnitude of GH secretion elicited by the previous somatotroph stimulation. In summary, a-adrenergic agonism appears to act primarily in GH control by inhibiting the hypothalamic release of somatostatin, rather than by stimulating GHRH secretion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite the critical role of Epidermal Growth Factor Receptor (EGFR) in glioblastoma pathogenesis [1,2], EGFR targeted therapies have achieved limited clinical efficacy [3]. Here we propose an alternate therapeutic strategy based on the conceptual framework of non-oncogene addiction [4,5]. A directed RNAi screen revealed that glioblastoma cells overexpressing EGFRvIII [6], an oncogenic variant of EGFR, become hyper-dependent on a variety of DNA repair genes. Among these, there was an enrichment of Base Excision Repair (BER) genes required for the repair of Reactive Oxygen Species (ROS)-induced DNA damage, including poly-ADP ribose polymerase 1 (PARP1). Subsequent studies revealed that EGFRvIII overexpression in glioblastoma cells caused increased levels of ROS, DNA strand break accumulation, and genome instability. In a panel of primary glioblastoma lines, sensitivity to PARP1 inhibition correlated with the levels of EGFR activation and oxidative stress. Gene expression analysis indicated that reduced expression of BER genes in glioblastomas with high EGFR expression correlated with improved patient survival. These observations suggest that oxidative stress secondary to EGFR hyperactivation necessitates increased cellular reliance on PARP1 mediated BER, and offer critical insights into clinical trial design.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A surface plasmon resonance (SPR)-based inhibition assay method using a polyclonal anti-mouse IgM arrayed Cryptosporidium sensor chip was developed for the real-time detection of Cryptosporidium parvum oocysts. The Cryptosporidium sensor chip was fabricated by subsequent immobilization of streptavidin and polyclonal anti-mouse IgM (secondary antibody) onto heterogeneous self-assembled monolayers (SAMs). The assay consisted of the immunoreaction step between monoclonal anti-C. parvum oocyst (primary antibody) and oocysts, followed by the binding step of the unbound primary antibody onto the secondary antibody surface. It enhanced not only the immunoreaction yield of the oocysts by batch reaction but also the accessibility of analytes to the chip surface by antibody–antibody interaction. Furthermore, the use of optimum concentration of the primary antibody maximized its binding response on the chip. An inversely linear calibration curve for the oocyst concentration versus SPR signal was obtained in the range of 1×106–1×102 oocysts ml-1. The oocyst detection was also successfully achieved in natural water systems. These results indicate that the SPR-based inhibition assay using the Cryptosporidium sensor chip has high application potential for the real-time analysis of C. parvum oocyst in laboratory and field water monitoring.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The presence of paralytic shellfish poisoning (PSP), diarrheic shellfish poisoning (DSP) and amnesic shellfish poisoning (ASP) toxins in seafood is a severe and growing threat to human health. In order to minimize the risks of human exposure, the maximum content of these toxins in seafood has been limited by legal regulations worldwide. The regulated limits are established in equivalents of the main representatives of the groups: saxitoxin (STX), okadaic acid (OA) and domoic acid (DA), for PSP, DSP and ASP, respectively. In this study a multi-detection method to screen shellfish samples for the presence of these toxins simultaneously was developed. Multiplexing was achieved using a solid-phase microsphere assay coupled to flow-fluorimetry detection, based on the Luminex xMap technology. The multi-detection method consists of three simultaneous competition immunoassays. Free toxins in solution compete with STX, OA or DA immobilized on the surface of three different classes of microspheres for binding to specific monoclonal antibodies. The IC50 obtained in buffer was similar in single- and multi-detection: 5.6 ± 1.1 ng/mL for STX, 1.1 ± 0.03 ng/mL for OA and 1.9 ± 0.1 ng/mL for DA. The sample preparation protocol was optimized for the simultaneous extraction of STX, OA and DA with a mixture of methanol and acetate buffer. The three immunoassays performed well with mussel and scallop matrixes displaying adequate dynamic ranges and recovery rates (around 90 % for STX, 80 % for OA and 100 % for DA). This microsphere-based multi-detection immunoassay provides an easy and rapid screening method capable of detecting simultaneously in the same sample three regulated groups of marine toxins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Maillard or browning reaction between sugar and protein contributes to the increased chemical modification and cross-linking of long-lived tissue proteins in diabetes. To evaluate the role of glycation and oxidation in these reactions, we have studied the effects of oxidative and antioxidative conditions and various types of inhibitors on the reaction of glucose with rat tail tendon collagen in phosphate buffer at physiological pH and temperature. The chemical modifications of collagen that were measured included fructoselysine, the glycoxidation products N epsilon-(carboxymethyl)lysine and pentosidine and fluorescence. Collagen cross-linking was evaluated by analysis of cyanogen bromide peptides using sodium dodecyl sulfate-polyacrylamide gel electrophoresis and by changes in collagen solubilization on treatment with pepsin or sodium dodecylsulfate. Although glycation was unaffected, formation of glycoxidation products and cross-linking of collagen were inhibited by antioxidative conditions. The kinetics of formation of glycoxidation products proceeded with a short lag phase and were independent of the amount of Amadori adduct on the protein, suggesting that autoxidative degradation of glucose was a major contributor to glycoxidation and cross-linking reactions. Chelators, sulfhydryl compounds, antioxidants, and aminoguanidine also inhibited formation of glycoxidation products, generation of fluorescence, and cross-linking of collagen without significant effect on the extent of glycation of the protein. We conclude that autoxidation of glucose or Amadori compounds on protein plays a major role in the formation of glycoxidation products and cross-liking of collagen by glucose in vitro and that chelators, sulfhydryl compounds, antioxidants, and aminoguanidine act as uncouplers of glycation from subsequent glycoxidation and cross-linking reactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The GHMP kinases are a structurally related family of small molecule kinases named after four of its members - galactokinase, homoserine kinase, mevalonate kinase and phosphomevalonate kinase. The group also includes the enzymes N-acetylgalactosamine kinase, arabinose kinase, mevalonate 5-diphosphate decarboxylase, archeal shikimate kinase and 4-(cytidine 5'-diphospho)-2-c-methyl-D-erythritol kinase. In addition the group includes two members not known to be catalytically active, the Caenorhabditis elegans sex-fate determining protein XOL-1 and the Saccharomyces cerevisiae transcriptional activator Gal3p. Two catalytic mechanisms have been proposed for GHMP kinases. The structure of mevalonate kinase suggests that an aspartate residue acts as an active site base, removing a proton from the substrate to facilitate attack on the ? phosphate of MgATP. In contrast, in homoserine kinase there is no potential catalytic base and it is proposed that catalysis is driven by transition state stabilisation. Potential chemotherapeutic interventions against GHMP kinases fall into three main categories: inhibition of galactokinase to assist suffers of galactosemia, inhibition of mevalonate kinase or mevalonate 5-diphosphate decarboxylase to reduce flux through the cholesterol biosynthesis pathway and inhibition of bacterial GHMP kinases for novel anti-microbial therapies. These are in the early stages of development, but the accumulation of structural and mechanistic data will assist future progress.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Malignant pleural mesothelioma (MPM) is a highly pro-inflammatory malignancy that is rapidly fatal and increasing in incidence. Cytokine signaling within the pro-inflammatory tumor microenvironment makes a critical contribution to the development of MPM and its resistance to conventional chemotherapy approaches. SMAC mimetic compounds (SMCs) are a promising class of anticancer drug that are dependent on tumor necrosis factor alpha (TNFa) signaling for their activity. As circulating TNFa expression is significantly elevated in MPM patients, we examined the sensitivity of MPM cell line models to SMCs. Surprisingly, all MPM cell lines assessed were highly resistant to SMCs either alone or when incubated in the presence of clinically relevant levels of TNFa. Further analyses revealed that MPM cells were sensitized to SMC-induced apoptosis by siRNA-mediated downregulation of the caspase 8 inhibitor FLIP, an antiapoptotic protein overexpressed in several cancer types including MPM. We have previously reported that FLIP expression is potently downregulated in MPM cells in response to the histone deacetylase inhibitor (HDACi) Vorinostat (SAHA). In this study, we demonstrate that SAHA sensitizes MPM cells to SMCs in a manner dependent on its ability to downregulate FLIP. Although treatment with SMC in the presence of TNFa promoted interaction between caspase 8 and the necrosis-promoting RIPK1, the cell death induced by combined treatment with SAHA and SMC was apoptotic and mediated by caspase 8. These results indicate that FLIP is a major inhibitor of SMC-mediated apoptosis in MPM, but that this inhibition can be overcome by the HDACi SAHA. © 2013 Macmillan Publishers Limited All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hyperglycemia may contribute directly to pericyte loss and capillary leakage in early diabetic retinopathy. To elucidate relative contributions of glycation, glycoxidation, sugar autoxidation, osmotic stress and metabolic effects in glucose-mediated capillary damage, we tested the effects of D-glucose, L-glucose, mannitol and the potentially protective effects of aminoguanidine on cultured bovine retinal capillary pericytes and endothelial cells. Media (containing 5 mM D-glucose) were supplemented to increase the concentration of each sugar by 5, 10, or 20 mM. Subconfluent pericytes and endothelial cells were exposed to the supplemented media in the presence or absence of aminoguanidine (1 nM-100 µM) for three days. Cell counts, viability and protein were determined. For both cell types, all three sugars produced concentration-dependent decreases in cell counts and protein content (p

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study was designed to determine if the histamine H3 receptor agonist R-alpha-methylhistamine would play a role in modulation of sympathetically evoked mydriasis in anesthetized rats, and if so, to ascertain the specific receptor subtype(s) involved. Reproducible frequency-response curves of pupillary dilation were generated by stimulation of the cervical preganglionic sympathetic nerve (1-32 Hz). Systemic administration of R-alpha-methylhistamine (0.3-3.0 mg kg(-1)) produced a dose-related inhibition of the evoked mydriasis. The greatest inhibition was seen at lower frequency levels, with about 43% depression observed at 2 Hz. The specific histamine H3 receptor antagonist, clobenpropit (3.0 mg kg(-1), i.v.), blocked the inhibitory effect of R-alpha-methylhistamine, whereas neither the histamine H2 receptor antagonist, cimetidine (5.0 mg kg(-1), i.v.), nor the histamine H1 receptor antagonist, chlorpheniramine (0.5 mg kg(-1), i.v.), was effective. The histamine H2 receptor agonist, dimaprit (10 mg kg(-1), i.v.), was also without effect on the evoked mydriasis. R-alpha-methylhistamine (3.0 mg kg(-1)) did not inhibit phenylephrine-induced mydriasis. These results support the conclusion that R-alpha-methylhistamine produces inhibition of sympathetically evoked mydriasis via histamine H3 receptor stimulation, presumably by an action on presynaptic histamine H3 receptors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Acute lung injury (ALI) is a common devastating clinical syndrome characterized by life-threatening respiratory failure requiring mechanical ventilation and multiple organ failure. There are in vitro, animal studies and pre-clinical data suggesting that statins may be beneficial in ALI. The Hydroxymethylglutaryl-CoA reductase inhibition with simvastatin in Acute lung injury to Reduce Pulmonary dysfunction (HARP-2) trial is a multicenter, prospective, randomized, allocation concealed, double-blind, placebo-controlled clinical trial which aims to test the hypothesis that treatment with simvastatin will improve clinical outcomes in patients with ALI.

Methods/Design: Patients fulfilling the American-European Consensus Conference Definition of ALI will be randomized in a 1: 1 ratio to receive enteral simvastatin 80 mg or placebo once daily for a maximum of 28 days. Allocation to randomized groups will be stratified with respect to hospital of recruitment and vasopressor requirement. Data will be recorded by participating ICUs until hospital discharge, and surviving patients will be followed up by post at 3, 6 and 12 months post randomization. The primary outcome is number of ventilator-free days to day 28. Secondary outcomes are: change in oxygenation index and sequential organ failure assessment score up to day 28, number of non pulmonary organ failure free days to day 28, critical care unit mortality; hospital mortality; 28 day post randomization mortality and 12 month post randomization mortality; health related quality of life at discharge, 3, 6 and 12 months post randomization; length of critical care unit and hospital stay; health service use up to 12 months post-randomization; and safety. A total of 540 patients will be recruited from approximately 35 ICUs in the UK and Ireland. An economic evaluation will be conducted alongside the trial. Plasma and urine samples will be taken up to day 28 to investigate potential mechanisms by which simvastatin might act to improve clinical outcomes.