925 resultados para algorithm optimization
Resumo:
MgB(2) is considered to be an important conductor for applications. Optimizing flux pinning in these conductors can improve their critical currents. Doping can influence flux pinning efficiency and grain connectivity, and also affect the resistivity, upper critical field and critical temperature. This study was designed to attempt the doping of MgB(2) on the Mg sites with metal-diborides using high-energy ball milling. MgB(2) samples were prepared by milling pre-reacted MgB(2) and TaB(2) powders using a Spex 8000M mill with WC jars and balls in a nitrogen-filled glove box. The mixing concentration in (Mg(1-x)Ta(x))B(2) was up to x = 0.10. Samples were removed from the WC jars after milling times up to 4000 minutes and formed into pellets using cold isostatic pressing. The pellets were heat treated in a hot isostatic press (HIP) at 1000 degrees C under a pressure of 30 kpsi for 24 hours. The influence that milling time and TaB(2) addition had on the microstructure and the resulting superconducting properties of TaB(2)-added MgB(2) is discussed. Improvement J(c) of at high magnetic fields and of pinning could be obtained in milled samples with added TaB(2) The sample with added 5at.% TaB(2) and milled for 300 minutes showed values of J(c) similar to 7 x 10(5) A/cm(2) and F(p) similar to 14 GN/m(3) at 2T, 4.2 K. The milled and TaB(2)-mixed samples showed higher values of mu(0)H(irr) than the unmilled-unmixed sample.
Resumo:
Banana, an important component in the diet of the global population, is one of the most consumed fruits in the world. This fruit is also very favorable to industry processes (e. g., fermented beverages) due to its rich content on soluble solids and minerals, with low acidity. The main objective of this work was to evaluate the influence of factors such as banana weight and extraction time during a hot aqueous extraction process on the total soluble solids content of banana. The extract is to be used by the food and beverage industries. The experiments were performed with 105 mL of water, considering the moisture of the ripe banana (65%). Total sugar concentrations were obtained in a beer analyzer and the result expressed in degrees Plato (degrees P, which is the weight of the extract or the sugar equivalent in 100 g solution at 20 degrees C), aiming at facilitating the use of these results by the beverage industries. After previous studies of characterization of the fruit and of ripening performance, a 2(2) full-factorial star design was carried out, and a model was developed to describe the behavior of the dependent variable (total soluble solids) as a function of the factors (banana weight and extraction time), indicating as optimum conditions for extraction 38.5 g of banana at 39.7 min.
Resumo:
The main objective of this paper is to relieve the power system engineers from the burden of the complex and time-consuming process of power system stabilizer (PSS) tuning. To achieve this goal, the paper proposes an automatic process for computerized tuning of PSSs, which is based on an iterative process that uses a linear matrix inequality (LMI) solver to find the PSS parameters. It is shown in the paper that PSS tuning can be written as a search problem over a non-convex feasible set. The proposed algorithm solves this feasibility problem using an iterative LMI approach and a suitable initial condition, corresponding to a PSS designed for nominal operating conditions only (which is a quite simple task, since the required phase compensation is uniquely defined). Some knowledge about the PSS tuning is also incorporated in the algorithm through the specification of bounds defining the allowable PSS parameters. The application of the proposed algorithm to a benchmark test system and the nonlinear simulation of the resulting closed-loop models demonstrate the efficiency of this algorithm. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Voltage and current waveforms of a distribution or transmission power system are not pure sinusoids. There are distortions in these waveforms that can be represented as a combination of the fundamental frequency, harmonics and high frequency transients. This paper presents a novel approach to identifying harmonics in power system distorted waveforms. The proposed method is based on Genetic Algorithms, which is an optimization technique inspired by genetics and natural evolution. GOOAL, a specially designed intelligent algorithm for optimization problems, was successfully implemented and tested. Two kinds of representations concerning chromosomes are utilized: binary and real. The results show that the proposed method is more precise than the traditional Fourier Transform, especially considering the real representation of the chromosomes.
Resumo:
The purpose of this paper is to propose a multiobjective optimization approach for solving the manufacturing cell formation problem, explicitly considering the performance of this said manufacturing system. Cells are formed so as to simultaneously minimize three conflicting objectives, namely, the level of the work-in-process, the intercell moves and the total machinery investment. A genetic algorithm performs a search in the design space, in order to approximate to the Pareto optimal set. The values of the objectives for each candidate solution in a population are assigned by running a discrete-event simulation, in which the model is automatically generated according to the number of machines and their distribution among cells implied by a particular solution. The potential of this approach is evaluated via its application to an illustrative example, and a case from the relevant literature. The obtained results are analyzed and reviewed. Therefore, it is concluded that this approach is capable of generating a set of alternative manufacturing cell configurations considering the optimization of multiple performance measures, greatly improving the decision making process involved in planning and designing cellular systems. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
This work presents a critical analysis of methodologies to evaluate the effective (or generalized) electromechanical coupling coefficient (EMCC) for structures with piezoelectric elements. First, a review of several existing methodologies to evaluate material and effective EMCC is presented. To illustrate the methodologies, a comparison is made between numerical, analytical and experimental results for two simple structures: a cantilever beam with bonded extension piezoelectric patches and a simply-supported sandwich beam with an embedded shear piezoceramic. An analysis of the electric charge cancelation effect on the effective EMCC observed in long piezoelectric patches is performed. It confirms the importance of reinforcing the electrodes equipotentiality condition in the finite element model. Its results indicate also that smaller (segmented) and independent piezoelectric patches could be more interesting for energy conversion efficiency. Then, parametric analyses and optimization are performed for a cantilever sandwich beam with several embedded shear piezoceramic patches. Results indicate that to fully benefit from the higher material coupling of shear piezoceramic patches, attention must be paid to the configuration design so that the shear strains in the patches are maximized. In particular, effective square EMCC values higher than 1% were obtained embedding nine well-spaced short piezoceramic patches in an aluminum/foam/aluminum sandwich beam.
Resumo:
The general flowshop scheduling problem is a production problem where a set of n jobs have to be processed with identical flow pattern on in machines. In permutation flowshops the sequence of jobs is the same on all machines. A significant research effort has been devoted for sequencing jobs in a flowshop minimizing the makespan. This paper describes the application of a Constructive Genetic Algorithm (CGA) to makespan minimization on flowshop scheduling. The CGA was proposed recently as an alternative to traditional GA approaches, particularly, for evaluating schemata directly. The population initially formed only by schemata, evolves controlled by recombination to a population of well-adapted structures (schemata instantiation). The CGA implemented is based on the NEH classic heuristic and a local search heuristic used to define the fitness functions. The parameters of the CGA are calibrated using a Design of Experiments (DOE) approach. The computational results are compared against some other successful algorithms from the literature on Taillard`s well-known standard benchmark. The computational experience shows that this innovative CGA approach provides competitive results for flowshop scheduling; problems. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
This paper investigates the validity of a simplified equivalent reservoir representation of a multi-reservoir hydroelectric system for modelling its optimal operation for power maximization. This simplification, proposed by Arvanitidis and Rosing (IEEE Trans Power Appar Syst 89(2):319-325, 1970), imputes a potential energy equivalent reservoir with energy inflows and outflows. The hydroelectric system is also modelled for power maximization considering individual reservoir characteristics without simplifications. Both optimization models employed MINOS package for solution of the non-linear programming problems. A comparison between total optimized power generation over the planning horizon by the two methods shows that the equivalent reservoir is capable of producing satisfactory power estimates with less than 6% underestimation. The generation and total reservoir storage trajectories along the planning horizon obtained by equivalent reservoir method, however, presented significant discrepancies as compared to those found in the detailed modelling. This study is motivated by the fact that Brazilian generation system operations are based on the equivalent reservoir method as part of the power dispatch procedures. The potential energy equivalent reservoir is an alternative which eliminates problems with the dimensionality of state variables in a dynamic programming model.
Resumo:
The flow in the automotive catalytic converter is, in general, not uniform. This significantly affects cost, service life, and performance, in particular, during cold startup. The current paper reports on a device that provided a large improvement in flow uniformity. The device is to be placed in the converter inlet diffuser and is constructed out of ordinary screens. It is cheap and easy to install. Moreover, the device does not present most of the undesired effects, such as increase in pressure drop and time to light off, often observed in other devices developed for the same purpose.
Resumo:
Porous ceramic samples were prepared from aqueous foam incorporated alumina suspension for application as hot aerosol filtering membrane. The procedure for establishment of membrane features required to maintain a desired flow condition was theoretically described and experimental work was designed to prepare ceramic membranes to meet the predicted criteria. Two best membranes, thus prepared, were selected for permeability tests up to 700 degrees C and their total and fractional collection efficiencies were experimentally evaluated. Reasonably good performance was achieved at room temperature, while at 700 degrees C, increased permeability was obtained with significant reduction in collection efficiency, which was explained by a combination of thermal expansion of the structure and changes in the gas properties. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
This paper presents an Adaptive Maximum Entropy (AME) approach for modeling biological species. The Maximum Entropy algorithm (MaxEnt) is one of the most used methods in modeling biological species geographical distribution. The approach presented here is an alternative to the classical algorithm. Instead of using the same set features in the training, the AME approach tries to insert or to remove a single feature at each iteration. The aim is to reach the convergence faster without affect the performance of the generated models. The preliminary experiments were well performed. They showed an increasing on performance both in accuracy and in execution time. Comparisons with other algorithms are beyond the scope of this paper. Some important researches are proposed as future works.
Resumo:
This paper presents a free software tool that supports the next-generation Mobile Communications, through the automatic generation of models of components and electronic devices based on neural networks. This tool enables the creation, training, validation and simulation of the model directly from measurements made on devices of interest, using an interface totally oriented to non-experts in neural models. The resulting model can be exported automatically to a traditional circuit simulator to test different scenarios.
Resumo:
This paper presents a new methodology to estimate unbalanced harmonic distortions in a power system, based on measurements of a limited number of given sites. The algorithm utilizes evolutionary strategies (ES), a development branch of evolutionary algorithms. The problem solving algorithm herein proposed makes use of data from various power quality meters, which can either be synchronized by high technology GPS devices or by using information from a fundamental frequency load flow, what makes the overall power quality monitoring system much less costly. The ES based harmonic estimation model is applied to a 14 bus network to compare its performance to a conventional Monte Carlo approach. It is also applied to a 50 bus subtransmission network in order to compare the three-phase and single-phase approaches as well as the robustness of the proposed method. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The roots of swarm intelligence are deeply embedded in the biological study of self-organized behaviors in social insects. Particle swarm optimization (PSO) is one of the modern metaheuristics of swarm intelligence, which can be effectively used to solve nonlinear and non-continuous optimization problems. The basic principle of PSO algorithm is formed on the assumption that potential solutions (particles) will be flown through hyperspace with acceleration towards more optimum solutions. Each particle adjusts its flying according to the flying experiences of both itself and its companions using equations of position and velocity. During the process, the coordinates in hyperspace associated with its previous best fitness solution and the overall best value attained so far by other particles within the group are kept track and recorded in the memory. In recent years, PSO approaches have been successfully implemented to different problem domains with multiple objectives. In this paper, a multiobjective PSO approach, based on concepts of Pareto optimality, dominance, archiving external with elite particles and truncated Cauchy distribution, is proposed and applied in the design with the constraints presence of a brushless DC (Direct Current) wheel motor. Promising results in terms of convergence and spacing performance metrics indicate that the proposed multiobjective PSO scheme is capable of producing good solutions.
Mitigation of the torque ripple of a switched reluctance motor through a multiobjective optimization
Resumo:
The purpose of this work is to perform a multiobjective optimization in a 4:2 switched reluctance motor aiming both to maximize the mitigation of the torque ripple and to minimize the degradations of the starting and mean torques. To accomplish this task the Pareto Archived Evolution Strategy was implemented jointly with the Kriging Method, which acts as a surrogate function. The technique was applied on the optimization of some rotor geometrical parameters with the aid of finite element simulations to evaluate the approximation points for the Kriging model. The numerical results were compared to those from tests.