951 resultados para ab initio CCSD(T) calculations


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Spin valves have revolutionized the field of magnetic recording and memory devices. Spin valves are generally realized in thin film heterostructures, where two ferromagnetic (FM) layers are separated by a nonmagnetic conducting layer. Here, we demonstrate spin-valve-like magnetoresistance at room temperature in a bulk ferrimagnetic material that exhibits a magnetic shape memory effect. The origin of this unexpected behavior in Mn2NiGa has been investigated by neutron diffraction, magnetization, and ab initio theoretical calculations. The refinement of the neutron diffraction pattern shows the presence of antisite disorder where about 13% of the Ga sites are occupied by Mn atoms. On the basis of the magnetic structure obtained from neutron diffraction and theoretical calculations, we establish that these antisite defects cause the formation of FM nanoclusters with parallel alignment of Mn spin moments in a Mn2NiGa bulk lattice that has antiparallel Mn spin moments. The direction of the Mn moments in the soft FM cluster reverses with the external magnetic field. This causes a rotation or tilt in the antiparallel Mn moments at the cluster-lattice interface resulting in the observed asymmetry in magnetoresistance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The structure of the Arpropargyl alcohol (ArPA) complex is determined from the rotational spectra of the parent complex and its two deuterated isotopologues, namely ArPA-D(OD) and ArPA-D(CD). The spectra confirm a geometry in which PA exists in the gauche form with Ar located in between OH and CCH groups. All a, b and c types of transitions show small splitting due to some large-amplitude motion dominated by COH torsion, as in the monomer. Splittings in a- and b-type transitions are of the order of a few kilohertz, whereas splitting in the c-type transitions is relatively larger (0.92.6 MHz) and decreases in the order ArPA>ArPA-D(CD)>ArPA-D(OD). The assignments are well supported by ab initio calculations. Atoms in molecules (AIM) and electrostatic potential calculations are used to explore the nature of the interactions in this complex. AIM calculations not only reveal the expected OHAr and Ar interactions in the Argauche-PA complex, but also novel CAr (of CH2OH group) and OHAr interactions in the Artrans-PA complex. Similar interactions are also present in the Armethanol complex.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Extensively studied Mn-doped semiconductor nanocrystals have invariably exhibited photoluminescence over a narrow energy window of width <= 150 meV in the orange-red region and a surprisingly large spectral width (>= 180 meV), contrary to its presumed atomic-like origin. Carrying out emission measurements on individual single nanocrystals and supported by ab initio calculations, we show that Mn PL emission, in fact, can (i) vary over a much wider range (similar to 370 meV) covering the deep green-deep red region and (ii) exhibit widths substantially lower (similar to 60-75 meV) than reported so far, opening newer application possibilities and requiring a fundamental shift in our perception of the emission from Mn-doped semiconductor nanocrystals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Double helical structures of DNA and RNA are mostly determined by base pair stacking interactions, which give them the base sequence-directed features, such as small roll values for the purine-pyrimidine steps. Earlier attempts to characterize stacking interactions were mostly restricted to calculations on fiber diffraction geometries or optimized structure using ab initio calculations lacking variation in geometry to comment on rather unusual large roll values observed in AU/AU base pair step in crystal structures of RNA double helices. We have generated stacking energy hyperspace by modeling geometries with variations along the important degrees of freedom, roll, and slide, which were chosen via statistical analysis as maximally sequence dependent. Corresponding energy contours were constructed by several quantum chemical methods including dispersion corrections. This analysis established the most suitable methods for stacked base pair systems despite the limitation imparted by number of atom in a base pair step to employ very high level of theory. All the methods predict negative roll value and near-zero slide to be most favorable for the purine-pyrimidine steps, in agreement with Calladine's steric clash based rule. Successive base pairs in RNA are always linked by sugar-phosphate backbone with C3-endo sugars and this demands C1-C1 distance of about 5.4 angstrom along the chains. Consideration of an energy penalty term for deviation of C1-C1 distance from the mean value, to the recent DFT-D functionals, specifically B97X-D appears to predict reliable energy contour for AU/AU step. Such distance-based penalty improves energy contours for the other purine-pyrimidine sequences also. (c) 2013 Wiley Periodicals, Inc. Biopolymers 101: 107-120, 2014.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Establishing the relative orientation of the two benzene molecules in the dimer has remained an enigmatic challenge. Consensus has narrowed the choice of structures to either a T-shape, that may be tilted, or a parallel displaced arrangement, but the relatively small energy differences makes identifying the global minimum difficult. Here we report an ab initio Car-Parrinello Molecular Dynamics based metadynamics computation of the free-energy landscape of the benzene dimer. Our calculations show that although competing structures may be isoenergetic, free energy always favors a tilted T-shape geometry at all temperatures where the bound benzene dimer exist. (C) 2013 AIP Publishing LLC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Molybdenum disulphide is a layered transition metal dichalcogenide that has recently raised considerable interest due to its unique semiconducting and opto-electronic properties. Although several theoretical studies have suggested an electronic phase transition in molybdenum disulphide, there has been a lack of experimental evidence. Here we report comprehensive studies on the pressure-dependent electronic, vibrational, optical and structural properties of multilayered molybdenum disulphide up to 35 GPa. Our experimental results reveal a structural lattice distortion followed by an electronic transition from a semiconducting to metallic state at similar to 19 GPa, which is confirmed by ab initio calculations. The metallization arises from the overlap of the valance and conduction bands owing to sulphur-sulphur interactions as the interlayer spacing reduces. The electronic transition affords modulation of the opto-electronic gain in molybdenum disulphide. This pressure-tuned behaviour can enable the development of novel devices with multiple phenomena involving the strong coupling of the mechanical, electrical and optical properties of layered nanomaterials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High-level ab initio calculations have been used to study the interactions between the CH3 group of CH3X (X = F, Cl, Br, CN) molecules and pi-electrons. These interactions are important because of the abundance of both the CH3 groups and pi-electrons in biological systems. Complexes between C2H4/C2H2 and CH3X molecules have been used as model systems. Various theoretical methods such as atoms in molecules theory, reduced density gradient analysis, and natural bond orbital analysis have been used to discern these interactions. These analyses show that the interaction of the p-electrons with the CH3X molecules leads to the formation of X-C...p carbon bonds. Similar complexes with other tetrel molecules, SiH3X and GeH3X, have also been considered.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pure rotational spectra of the propargyl alcohol dimer and its three deuterium isotopologues have been observed in the 4 to 13 GHz range using a pulsed-nozzle Fourier transform microwave spectrometer. For the parent dimer, a total of 51 transitions could be observed and fitted within experimental uncertainty. For two mono-substituted and one bi-substituted deuterium isotopologues, a total of 14, 17, and 19 transitions were observed, respectively. The observed rotational constants for the parent dimer A = 2321.8335(4) MHz, B = 1150.4774(2) MHz, and C = 1124.8898(2) MHz] are close to those of the most stable structure predicted by ab initio calculations. Spectra of the three deuterated isotopologues and Kraitchman analysis positively confirm this structure. Geometrical parameters and ``Atoms in Molecules'' analysis on the observed structure reveal that the two propargyl alcohol units in the dimer are bound by three different types of hydrogen bonds: O-H center dot center dot center dot O, O-H center dot center dot center dot pi, and C-H center dot center dot center dot pi. To the best of our knowledge, propargyl alcohol seems to be the smallest molecule forming a homodimer with three different points of contact. (C) 2014 AIP Publishing LLC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Development of microporous adsorbents for separation and sequestration of carbon dioxide from flue gas streams is an area of active research. In this study, we assess the influence of specific functional groups on the adsorption selectivity of CO2/N-2 mixtures through Grand Canonical Monte Carlo (GCMC) simulations. Our model system consists of a bilayer graphene nanoribbon that has been edge functionalized with OH, NH2, NO2, CH3 and COOH. Ab initio Moller-Plesset (MP2) calculations with functionalized benzenes are used to obtain binding energies and optimized geometries for CO2 and N-2. This information is used to validate the choice classical forcefields in GCMC simulations. In addition to simulations of adsorption from binary mixtures of CO2 and N-2, the ideal adsorbed solution theory (IAST) is used to predict mixture isotherms. Our study reveals that functionalization always leads to an increase in the adsorption of both CO2 and N-2 with the highest for COOH. However, significant enhancement in the selectivity for CO2 is only seen with COOH functionalized nanoribbons. The COOH functionalization gives a 28% increase in selectivity compared to H terminated nanoribbons, whereas the improvement in the selectivity for other functional groups are much Enure modest. Our study suggests that specific functionalization with COOH groups can provide a material's design strategy to improve CO2 selectivity in microporous adsorbents. Synthesis of graphene nanoplatelets with edge functionalized COOH, which has the potential for large scale production, has recently been reported (Jeon el, al., 2012). (C) 2014 Elsevier Ltd. All rights reserved,

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Codoping with Cu and Mo is shown to have a synergistic effect on the photocatalytic activity of TiO2. The enhancement in activity is observed only if the synthesis route results in TiO2 in which (Cu, Mo) codopants are forced into the TiO2 lattice. Using X-ray photoelectron spectroscopy, Cu and Mo are shown to be present in the +2 and +6 oxidation states, respectively. A systematic study of the ternary system shows that TiO2 containing 6 mol % CuO and 1.5 mol % MoO3 is the most active ternary composition. Ab initio calculations show that codoping of TiO2 using (Mo, Cu) introduces levels above the valence band, and below the conduction band, resulting in a significant reduction in the band gap (similar to 0.8 eV). However, codoping also introduces deep defect states, which can have a deleterious impact on photoactivity. This helps rationalize the narrow compositional window over which the enhancement in photocatalytic activity is observed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this discussion, we show that a static definition of a `bond' is not viable by looking at a few examples for both inter-and intra-molecular hydrogen bonding. This follows from our earlier work (Goswami and Arunan, Phys. Chem. Chem. Phys. 2009, 11, 8974) which showed a practical way to differentiate `hydrogen bonding' from `van der Waals interaction'. We report results from ab initio and atoms in molecules theoretical calculations for a series of Rg center dot center dot center dot HX complexes (Rg = He/Ne/Ar and X = F/Cl/Br) and ethane-1,2-diol. Results for the Rg center dot center dot center dot HX/DX complexes show that Rg center dot center dot center dot DX could have a `deuterium bond' even when Rg center dot center dot center dot HX is not `hydrogen bonded', according to the practical criterion given by Goswami and Arunan. Results for ethane-1,2-diol show that an `intra-molecular hydrogen bond' can appear during a normal mode vibration which is dominated by the O center dot center dot center dot O stretching, though a `bond' is not found in the equilibrium structure. This dynamical `bond' formation may nevertheless be important in ensuring the continuity of electron density across a molecule. In the former case, a vibration `breaks' an existing bond and in the later case, a vibration leads to `bond' formation. In both cases, the molecule/complex stays bound irrespective of what happens to this `hydrogen bond'. Both these cases push the borders on the recent IUPAC recommendation on hydrogen bonding (Arunan et al. Pure. Appl. Chem. 2011, 83 1637) and justify the inclusive nature of the definition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the first microwave spectroscopic investigation on hexafluoroisopropanol (HFIP). A pulsed nozzle Fourier transform microwave spectrometer has been used to determine the rotational constants for HFIP as A = 2105.12166(18) MHz, B = 1053.99503(12) MHz, and C = 932.33959(13) MHz. In addition, five isotopologues of HFIP have been observed experimentally to determine the accurate structure of HFIP. The observed spectrum could be assigned to the most stable conformer of HFIP, called antiperiplanar. Available spectroscopic information and ab initio calculations on five prototype molecules helped in exploring the torsional behavior of molecules having a CF3-C-CF3 group. Two-dimensional potential energy surfaces have been analyzed for all molecules, which explained the presence/absence of doubling in the rotational transitions. With the help of natural bond orbital (NBO) analysis, reasons for the conformational preference of HFIP have been explained.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Viral capsids derived from an icosahedral plant virus widely used in physical and nanotechnological investigations were fully dissociated into dimers by a rapid change of pH. The process was probed in vitro at high spatiotemporal resolution by time-resolved small-angle X-ray scattering using a high brilliance synchrotron source. A powerful custom-made global fitting algorithm allowed us to reconstruct the most likely pathway parametrized by a set of stoichiometric coefficients and to determine the shape of two successive intermediates by ab initio calculations. None of these two unexpected intermediates was previously identified in self-assembly experiments, which suggests that the disassembly pathway is not a mirror image of the assembly pathway. These findings shed new light on the mechanisms and the reversibility of the assembly/disassembly of natural and synthetic virus-based systems. They also demonstrate that both the structure and dynamics of an increasing number of intermediate species become accessible to experiments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate the direct correspondence between Co band ferromagnetism and structural parameters in the pnictide oxides RCoPO for different rare-earth ions (R = La, Pr, Nd, Sm) by means of muon-spin spectroscopy and ab initio calculations, complementing our results published previously G. Prando et al., Common effect of chemical and external pressures on the magnetic properties of RCoPO (R = La, Pr), Phys. Rev. B 87, 064401 (2013)]. We find that both the transition temperature to the ferromagnetic phase T-C and the volume of the crystallographic unit cell V are conveniently tuned by the R ionic radius and/or external pressure. We report a linear correlation between T-C and V and our ab initio calculations unambiguously demonstrate a full equivalence of chemical and external pressures. As such, we show that R ions influence the ferromagnetic phase only via the induced structural shrinkage without involving any active role from the electronic f degrees of freedom, which are only giving a sizable magnetic contribution at much lower temperatures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thermal decomposition studies of 3-carene, a bio-fuel, have been carried out behind the reflected shock wave in a single pulse shock tube for temperature ranging from 920 K to 1220 K. The observed products in thermal decomposition of 3-carene are acetylene, allene, butadiene, isoprene, cyclopentadiene, hexatriene, benzene, toluene and p-xylene. The overall rate constant for 3-carene decomposition was found to be k/s(-1) = 10((9.95 +/- 0.54)) exp(-40.88 +/- 2.71 kcal mol(-1) /RT). Ab-initio theoretical calculations were carried out to find the minimum energy pathway that could explain the formation of the observed products in the thermal decomposition experiments. These calculations were carried out at B3LYP/6-311 + G(d,p) and G3 level of theories. A kinetic mechanism explaining the observed products in the thermal decomposition experiments has been derived. It is concluded that the linear hydrocarbons are the primary products in the pyrolysis of 3-carene.