912 resultados para YEAST APOPTOSIS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

p15INK4B, a cyclin-dependent kinase inhibitor, has been recognized as a tumor suppressor. Loss of or methylation of the p15INK4B gene in chronic myeloid leukemia (CML) cells enhances myeloid progenitor formation from common myeloid progenitors. Therefore, we examined the effects of overexpressed p15INK4B on proliferation and apoptosis of CML cells. Overexpression of p15INK4B inhibited the growth of K562 cells by downregulation of cyclin-dependent kinase 4 (CDK4) and cyclin D1 expression. Overexpression of p15INK4B also induced apoptosis of K562 cells by upregulating Bax expression and downregulating Bcl-2 expression. Overexpression of p15INK4B together with STI571 (imatinib) or BCR-ABL1 small interfering RNA (siRNA) also enhanced growth inhibition and apoptosis induction of K562 cells. The enhanced effect was also mediated by reduction of cyclin D1 and CDK4 and regulation of Bax and Bcl-2. In conclusion, our study may provide new insights into the role of p15INK4B in CML and a potential therapeutic target for overcoming tyrosine kinase inhibitor resistance in CML.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study investigated the in vitro and in vivo antiproliferative activity of esculetin against hepatocellular carcinoma, and clarified its potential molecular mechanisms. Cell viability was determined by the MTT (tetrazolium) colorimetric assay. In vivoantitumor activity of esculetin was evaluated in a hepatocellular carcinoma mouse model. Seventy-five C57BL/6J mice were implanted with Hepa1-6 cells and randomized into five groups (n=15 each) given daily intraperitoneal injections of vehicle (physiological saline), esculetin (200, 400, or 700 mg·kg-1·day-1), or 5-Fu (200 mg·kg-1·day-1) for 15 days. Esculetin significantly decreased tumor growth in mice bearing Hepa1-6 cells. Tumor weight was decreased by 20.33, 40.37, and 55.42% with increasing doses of esculetin. Esculetin significantly inhibited proliferation of HCC cells in a concentration- and time-dependent manner and with an IC50 value of 2.24 mM. It blocked the cell cycle at S phase and induced apoptosis in SMMC-7721 cells with significant elevation of caspase-3 and caspase-9 activity, but did not affect caspase-8 activity. Moreover, esculetin treatment resulted in the collapse of mitochondrial membrane potential in vitro and in vivo accompanied by increased Bax expression and decreased Bcl-2 expression at both transcriptional and translational levels. Thus, esculetin exerted in vitro and in vivo antiproliferative activity in hepatocellular carcinoma, and its mechanisms involved initiation of a mitochondrial-mediated, caspase-dependent apoptosis pathway.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pancreatic cancer is the fourth leading cause of cancer death. Gemcitabine is widely used as a chemotherapeutic agent for the treatment of pancreatic cancer, but the prognosis is still poor. Berberine, an isoquinoline alkaloid extracted from a variety of natural herbs, possesses a variety of pharmacological properties including anticancer effects. In this study, we investigated the anticancer effects of berberine and compared its use with that of gemcitabine in the pancreatic cancer cell lines PANC-1 and MIA-PaCa2. Berberine inhibited cell growth in a dose-dependent manner by inducing cell cycle arrest and apoptosis. After berberine treatment, the G1 phase of PANC-1 cells increased by 10% compared to control cells, and the G1 phase of MIA-PaCa2 cells was increased by 2%. Whereas gemcitabine exerts antiproliferation effects through S-phase arrest, our results showed that berberine inhibited proliferation by inducing G1-phase arrest. Berberine-induced apoptosis of PANC-1 and MIA-PaCa2 cells increased by 7 and 2% compared to control cells, respectively. Notably, berberine had a greater apoptotic effect in PANC-1 cells than gemcitabine. Upon treatment of PANC-1 and MIA-PaCa2 with berberine at a half-maximal inhibitory concentration (IC50), apoptosis was induced by a mechanism that involved the production of reactive oxygen species (ROS) rather than caspase 3/7 activation. Our findings showed that berberine had anti-cancer effects and may be an effective drug for pancreatic cancer chemotherapy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Peroxisome proliferator activator receptor-gamma (PPARγ) is a ligand-activated transcriptional factor involved in the carcinogenesis of various cancers. Insulin-like growth factor-binding protein-3 (IGFBP-3) is a tumor suppressor gene that has anti-apoptotic activity. The purpose of this study was to investigate the anticancer mechanism of PPARγ with respect to IGFBP-3. PPARγ was overexpressed in SNU-668 gastric cancer cells using an adenovirus gene transfer system. The cells in which PPARγ was overexpressed exhibited growth inhibition, induction of apoptosis, and a significant increase in IGFBP-3 expression. We investigated the underlying molecular mechanisms of PPARγ in SNU-668 cells using an IGFBP-3 promoter/luciferase reporter system. Luciferase activity was increased up to 15-fold in PPARγ transfected cells, suggesting that PPARγ may directly interact with IGFBP-3 promoter to induce its expression. Deletion analysis of the IGFBP-3 promoter showed that luciferase activity was markedly reduced in cells without putative p53-binding sites (-Δ1755, -Δ1795). This suggests that the critical PPARγ-response region is located within the p53-binding region of the IGFBP-3 promoter. We further demonstrated an increase in PPARγ-induced luciferase activity even in cells treated with siRNA to silence p53 expression. Taken together, these data suggest that PPARγ exhibits its anticancer effect by increasing IGFBP-3 expression, and that IGFBP-3 is a significant tumor suppressor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As an essential trace element, copper can be toxic in mammalian cells when present in excess. Metallothioneins (MTs) are small, cysteine-rich proteins that avidly bind copper and thus play an important role in detoxification. YeastCUP1 is a member of the MT gene family. The aim of this study was to determine whether yeast CUP1 could bind copper effectively and protect cells against copper stress. In this study,CUP1 expression was determined by quantitative real-time PCR, and copper content was detected by inductively coupled plasma mass spectrometry. Production of intracellular reactive oxygen species (ROS) was evaluated using the 2',7'-dichlorofluorescein-diacetate (DCFH-DA) assay. Cellular viability was detected using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, and the cell cycle distribution of CUP1 was analyzed by fluorescence-activated cell sorting. The data indicated that overexpression of yeast CUP1 in HeLa cells played a protective role against copper-induced stress, leading to increased cellular viability (P<0.05) and decreased ROS production (P<0.05). It was also observed that overexpression of yeast CUP1 reduced the percentage of G1 cells and increased the percentage of S cells, which suggested that it contributed to cell viability. We found that overexpression of yeast CUP1 protected HeLa cells against copper stress. These results offer useful data to elucidate the mechanism of the MT gene on copper metabolism in mammalian cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High plasma levels of homocysteine (Hcy) promote the progression of neurodegenerative diseases. However, the mechanism by which Hcy mediates neurotoxicity has not been elucidated. We observed that upon incubation with Hcy, the viability of a neuroblastoma cell line Neuro2a declined in a dose-dependent manner, and apoptosis was induced within 48 h. The median effective concentration (EC50) of Hcy was approximately 5 mM. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) nuclear translocation and acylation has been implicated in the regulation of apoptosis. We found that nuclear translocation and acetylation of GAPDH increased in the presence of 5 mM Hcy and that higher levels of acetyltransferase p300/CBP were detected in Neuro2a cells. These findings implicate the involvement of GAPDH in the mechanism whereby Hcy induces apoptosis in neurons. This study highlights a potentially important pathway in neurodegenerative disorders, and a novel target pathway for neuroprotective therapy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Whey is produced in large amounts by cheese industries. This by-product can be used for biomass production by yeast cultivation, resulting in commercially attractive products. The use of yeast extracts as source of flavour enhancer consists of an expansible market, encouraged by costumer's choice for natural additives. The development of a suitable and economically viable project for the generation of valued-added by-products, may allow the dairy industry to diversify their portfolio and increase their rentability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sugar cane juice containing 12% (w.w -1) of total reducing sugars and 0.0 to 5.0 mmol of nickel L-1, with pH ranging from 3.5 to 6.5, was inoculated with Fleischmann’s yeast (Saccharomyces cerevisiae) (10% w.w -1). Six hours after fermentation, the yeast’s cellular viability and trehalose content were evaluated. The resulting must was centrifuged and the raw yeast was analyzed by atomic absorption spectroscopy to evaluate the intracellular levels of calcium, copper, iron, magnesium, manganese, nickel, phosphorus, potassium, sulfur and zinc. The intracellular levels of iron, magnesium and calcium were affected and the yeast’s susceptibility to nickel was enhanced by the decrease in pH. The yeast’s growth was not affected by nickel at high pH, but the toxic effects of nickel were potentiated at low pH.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to evaluate the effects of pH, dextrose and yeast extract on the cadmium toxicity on Saccharomyces cerevisiae PE-2. In the first assay, the YED mediums with different pH (2, 3, 4, 5, 6, 7, and 8) containing 0.0 and 0.05 mmol Cd L-1 were inoculated with yeast suspension and incubated at 30 °C for 18 hours. During the anaerobic growth, the biomass concentration was determined. The yeast trehalose content, cell viability, and the growth rate were assessed at the beginning and at the end of the growth stages. In the second assay the YED mediums were diluted to the total, ½, and ¼ content of dextrose and yeast and 0.0 and 0.05 mmol Cd L-1 were added. The pH of the mediums was adjusted to 5. The culture mediums were inoculated and incubated at 30 °C for 18 hours. The yeast growth was not affected by cadmium at high pH, but at low pH the yeast becomes more sensitive to the toxic effect. The yeast susceptibility to cadmium was enhanced by the decrease of yeast extract strength and the increase of dextrose strength.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of the present study was the isolation of a yeast strain, from citrus fruit peels, able to produce a polygalacturonase by submerged fermentation with maceration activity of raw cassava roots. Among 160 yeast strains isolated from citrus peels, one strain exhibited the strongest pectinolytic activity. This yeast was identified as Wickerhamomyces anomalus by 5.8S-ITS RFLP analysis and confirmed by amplification of the nucleotide sequence. The yeast produced a polygalacturonase (PG) in Erlenmeyer shake flasks containing YNB, glucose, and citrus pectin. PG synthesis occurred during exponential growth phase, reaching 51 UE.mL-1 after 8 hours of fermentation. A growth yield (Yx/s) of 0.43 gram of cell dry weight per gram of glucose consumed was obtained, and a maximal specific growth rate (µm) of 0.346 h-1 was calculated. The microorganism was unable to assimilate sucrose, galacturonic acid, polygalacturonic acid, or citrus pectin, but it required glucose as carbon and energy source and polygalacturonic acid or citrus pectin as inducers of enzyme synthesis. The crude enzymatic extract of Wickerhamomyces anomalus showed macerating activity of raw cassava. This property is very important in the production of dehydrated mashed cassava, a product of regional interest in the province of Misiones, Argentina.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thermal inactivation of yeast isolated from spoiled Jubileu peach puree and that of polyphenoloxidase (PPO) and peroxidase (POD) in cv. Jubileu, which is widely cultivated in southern Rio Grande do Sul state, Brazil, were studied. PPO and POD were extracted using the protein powder method and submitted to partial purification by precipitation followed by dialysis. The enzymatic activity was determined measuring the increase in absorbance at 420 nm for PPO and 470 nm for POD. The yeast used in this investigation was isolated from spoiled Jubileu peach puree at 22 °Brix, with total initial microbial count of 22 × 10² UFCmL- 1. Stock cultures were maintained on potato dextrose agar (PDA) slants at 4 °C and pH 5 for later use for microbial growth. In all cases, kinetic analysis of the results suggests that the thermal inactivation was well described by a first-order kinetic model, and the temperature dependence was significantly represented by the Arrhenius law. Both enzymes were affected by heat denaturation, and PPO was more thermostable. PPO was also more thermosTable than the yeast isolated from peach puree. The D60-values were 1.53 and 1.87 min for PPO and yeast isolated from spoiled Jubileu peach puree, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The kinetic study of the coupled enzymatic reaction involving monomeric yeast hexokinase PII (HK) and yeast glucose-6-phosphate dehydrogenase (G-6-PDH) yields a Michaelis constant of 0.15 ± 0.01 mM for D-glucose. At pH 8.7 HK is present in monomeric form. The addition of polyethylene glycol (PEG), to the reaction mixture increased the affinity of HK for glucose, independent ofMW of the PEG from 2000 to 10000. The osmotic stress exerted by PEG can be used to measure the change in number of water molecules that accompany enzyme conformational changes (Rand, et al., 1993). Results indicate that the G-6-PDH is not osmotically sensitive and thus, the change in the number of PEG-inaccessible water molecules (ANw) measured in the coupled reaction is only the difference between the glucose-bound and glucosefree conformations of HK. ANw ~ 450 with PEGs of MW > 2000 under conditions for both binding (Reid and Rand, 1997) and kinetic assays. The contribution water may play in the binding of ATP (Km = 0.24 + 0.02 mM) has also been examined. It was found that in this case ANw = (for osmotic pressures < 2.8x10* dynes/cm^), suggesting no additional numbers of waters are displaced when ATP binds to HK. Osmotic pressure experiments were also performed with dimeric HK. It was determined that both the monomeric and dimeric forms of HK give the same ANw under low pressures. If this large ANw is due to conformational flexibility, it would appear that the flexibility is not reduced upon dimerization ofthe enzyme.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The maximum amount of ethyl carbamate (EC), a known animal carcinogen produced by the reaction of urea and ethanol, allowed in alcoholic beverages is regulated by legislation in many countries. Wine yeast produce urea by the metabolism of arginine, the predominant assimilable amino acid in must. This action is due to arginase (encoded by CARl). Regulation of CARl, and other genes in this pathway, is often attributed to a well-documented phenomenon known as nitrogen catabolite repression. The effect of the timing of di-ammonium phosphate (DAP) additions on the nitrogen utilization, regulation of CARl, and EC production was investigated. A correlation was found between the timing of DAP addition and the utilization of nitrogen. When DAP was added earlier in the fermentations, less amino nitrogen and more ammonia nitrogen was sequestered from the media by the cells. It was also seen that early DAP addition led to more total nitrogen being used, with a maximal difference of ~25% between fermentations where no DAP was added versus addition at the start of the fermentation. The effect of the timing ofDAP addition on the expression of CARJ during fermentation was analyzed via northern transfer and the relative levels of CARl expression were determined. The trends in expression can be correlated to the nitrogen data and be used to partially explain differences in EC formation between the treatments. EC was quantified at the end of fermentation by GC/MS. In Montrachet yeast, a significant positive correlation was found between the timing of DAP addition, from early to late, and the final EC concentration m the wine (r = 0.9226). In one of the fermentations, EC levels of 30.5 ppb was foimd when DAP was added at the onset of fermentation. A twofold increase (69.5 ppb) was observed when DAP was added after 75% of the sugars were metabolized. When no DAP was added, the ethyl carbamate levels are comparable at a value of 38 ppb. In contrast, the timing of DAP additions do not affect the level EC produced by the yeast ECU 18 in this manner. The study of additional yeast strains shows that the effect of DAP addition to fermentations is strain dependent. Our results reveal the potential importance of the timing of DAP addition to grape must with respect to EC production, and the regulatory effect of DAP additions on the expression of genes in the pathway for arginine metabolism in certain wine yeast strains.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The adapted metabolic response of commercial wine yeast under prolonged exposure to concentrated solutes present in Icewine juice is not fully understood. Presently, there is no information regarding the transcriptomic changes in gene expression associated with the adaptive stress response ofwine yeast during Icewine fermentation compared to table wine fermentation. To understand how and why wine yeast respond differently at the genomic level and ultimately at the metabolic level during Icewine fermentation, the focus ofthis project was to identify and compare these differences in the wine yeast Saccharomyces cerevisiae KI-Vll16 using cDNA microarray technology during the first five days of fermentation. Significant differences in yeast gene expression patterns between fermentation conditions were correlated to differences in nutrient utilization and metabolite production. Sugar consumption, nitrogen usage and metabolite levels were measured using enzyme assays and HPLC. Also, a small subset of differentially expressed genes was verified using Northern analysis. The high osmotic stress experienced by wine yeast throughout Icewine fermentation elicited changes in cell growth and metabolism correlating to several fermentation difficulties, including reduced biomass accumulation and fermentation rate. Genes associated with carbohydrate and nitrogen transport and metabolism were expressed at lower levels in Icewine juice fermenting cells compared to dilute juice fermenting cells. Osmotic stress, not nutrient availability during Icewine fermentation appears to impede sugar and nitrogen utilization. Previous studies have established that glycerol and acetic acid production are increased in yeast during Icewine fermentation. A gene encoding for a glycerollW symporter (STL1) was found to be highly expressed up to 25-fold in the i Icewine juice condition using microarray and Northern analysis. Active glycerol transport by yeast under hyperosmotic conditions to increase cytosolic glycerol concentration may contribute to reduced cell growth observed in the Icewine juice condition. Additionally, genes encoding for two acetyl CoA synthetase isoforms (ACSl and ACS2) were found to be highly expressed, 19- and II-fold respectively, in dilute juice fermenting cells relative to the Icewine juice condition. Therefore, decreased conversion of acetate to acetyl-CoA may contribute to increased acetic acid production during Icewine fermentation. These results further help to explain the response of wine yeast as they adapt to Icewine juice fermentation. ii

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thesis (M. Sc.) - Brock University, 1975.