969 resultados para X-state
Resumo:
B3-LYP/cc-pVDZ calculations of the gas-phase structure and vibrational spectra of the isolated molecule cyclo(L-Ser-L-Ser), a cyclic di-amino acid peptide (CDAP), were carried out by assuming C-2 symmetry. It is predicted that the minimum-energy structure is a boat conformation for the diketopiperazine (DKP) ring with both L-Beryl side chains being folded slightly above the ring. An additional structure of higher energy (15.16 kJ mol(-1)) has been calculated for a DKP ring with a planar geometry, although in this case two fundamental vibrations have been calculated with imaginary wavenumbers. The reported X-ray crystallographic structure of cyclo(L-Ser-L-Ser), shows that the DKP ring displays a near-planar conformation, with both the two L-Beryl side chains being folded above the ring. It is hypothesized that the crystal packing forces constrain the DKP ring in a planar conformation and it is probable that the lower energy boat conformation may prevail in the aqueous environment. Raman scattering and Fourier-transform infrared (FT-IR) spectra of solid state and aqueous solution samples of cyclo(L-Ser-L-Ser) are reported and discussed. Vibrational band assignments have been made on the basis of comparisons with the calculated vibrational spectra and band wavenumber shifts upon deuteration of labile protons. The experimental Raman and IR results for solid-state samples show characteristic amide I vibrations which are split (Raman:1661 and 1687 cm(-1), IR:1666 and 1680 cm(-1)), possibly due to interactions between molecules in a crystallographic unit cell. The cis amide I band is differentiated by its deuterium shift of ~ 30 cm(-1), which is larger than that previously reported for trans amide I deuterium shifts. A cis amide II mode has been assigned to a Raman band located at 1520 cm(-1). The occurrence of this cis amide II mode at a wavenumber above 1500 cm(-1) concurs with results of previously examined CDAP molecules with low molecular weight substituents on the C-alpha atoms, and is also indicative of a relatively unstrained DKP ring.
Resumo:
[Introduction] The recent, unparalleled ascendancy of the liberal democratic state may seem to render alternative theories of the state redundant. But while the prevailing view might be that “I have seen the future, and it works”, it was not so long ago that this was said about a very different type of state. And while the liberal democratic state is an abundant form of government, in practice this often reflects an uneasy compromise of conflicting conceptions of politics. It thus remains important to unpick the theoretical underpinnings of conceptions of the state.
Resumo:
Regime shifts are sudden changes in ecosystem structure that can be detected across several ecosystem components. The concept that regime shifts are common in marine ecosystems has gained popularity in recent years. Many studies have searched for the step-like changes in ecosystem state expected under a simple interpretation of this idea. However, other kinds of change, such as pervasive trends, have often been ignored. We assembled over 300 ecological time series from seven UK marine regions, covering two to three decades. We developed state-space models for the first principal component of the time series in each region, a common measure of ecosystem state. Our models allowed both trends and step changes, possibly in combination. We found trends in three of seven regions and step changes in two of seven regions. Gradual and sudden changes are therefore important trajectories to consider in marine ecosystems.
Resumo:
The charge state distributions of Fe, Na, and F are determined in a photoionized laboratory plasma using high resolution x-ray spectroscopy. Independent measurements of the density and radiation flux indicate unprecedented values for the ionization parameter ���¾=20 25 erg cm s-1 under near steady-state conditions. Line opacities are well fitted by a curve-of-growth analysis which includes the effects of velocity gradients in a one-dimensional expanding plasma. First comparisons of the measured charge state distributions with x-ray photoionization models show reasonable agreement.
Resumo:
In experiments at the high-power Z-facility at Sandia National Laboratory in Albuquerque, New Mexico, we have been able to produce a low density photoionized laboratory plasma of Fe mixed with NaF. The conditions in the experiment allow a meaningful comparison with X-ray emission from astrophysical sources. The charge state distributions of Fe, Na and F are determined in this plasma using high resolution X-ray spectroscopy. Independent measurements of the density and radiation flux indicate unprecedented values for the ionization parameter xi = 20-25 erg cm s(-1) under nearly steady-state conditions. First comparisons of the measured charge state distributions with X-ray photoionization models show reasonable agreement, although many questions remain.
Resumo:
An entangled two-mode coherent state is studied within the framework of 2 x 2-dimensional Hilbert space. An entanglement concentration scheme based on joint Bell-state measurements is worked out. When the entangled coherent state is embedded in vacuum environment, its entanglement is degraded but not totally lost. It is found that the larger the initial coherent amplitude, the faster entanglement decreases. We investigate a scheme to teleport a coherent superposition state while considering a mixed quantum channel. We find that the decohered entangled coherent state may be useless for quantum teleportation as it gives the optimal fidelity of teleportation less than the classical limit 2/3.
Resumo:
Charge exchange followed by radiative stabilization are the main processes responsible for the recent observations of X-ray emission from comets in their approach to the Sun. A new apparatus was constructed at JPL to measure, in collisions of HCIs with atoms and molecules, (a) absolute cross sections for single and multiple charge exchange, and (b) normalized X-ray emission cross sections. The ions are produced by the JPL HCI Facility and passed through a neutral-gas target cell. The product charge states are analyzed by a retarding potential difference technique. Results are made absolute by measuring target pressure, and incident and product ion currents. X-rays emitted from the product ions are detected with a Ge solid-state detector having a resolution of approximately 100 eV. X-ray astronomy has taken major steps forward with the recent launch of the high-resolution satellites Chandra and Newton. The cross sections reported herein are essential for the development of the solar wind comet interaction models inspired by these observations.
Resumo:
The laser-induced photodissociation of formaldehyde in the wavelength range 309<λ<330nm 309<λ<330nm has been investigated using H (Rydberg) atom photofragment translational spectroscopy. Photolysis wavelengths corresponding to specific rovibronic transitions in the A ˜ A 2 1 ←X ˜ A 1 1 ÃA21←X̃A11 2 1 0 4 3 0 201403 , 2 2 0 4 1 0 202401 , 2 2 0 4 3 0 202403 , 2 3 0 4 1 0 203401 , and 2 1 0 5 1 0 201501 bands of H 2 CO H2CO were studied. The total kinetic energy release spectra so derived can be used to determine partial rotational state population distributions of the HCO cofragment. HCO product state distributions have been derived following the population of various different N K a NKa levels in the A ˜ A 2 1 ÃA21 2 2 4 3 2243 and 2 3 4 1 2341 states. Two distinct spectral signatures are identified, suggesting competition between dissociation pathways involving the X ˜ A 1 1 X̃A11 and the a ˜ A 2 3 ãA23 potential energy surfaces. Most rovibrational states of H 2 CO(A ˜ A 2 1 ) H2CO(ÃA21) investigated in this work produceH+HCO(X ˜ A ′ 2 ) H+HCO(X̃A′2) photofragments with a broad kinetic energy distribution and significant population in high energy rotational states of HCO. Photodissociation via the A ˜ A 2 1 ÃA21 2 2 4 3 2243 1 1,1 11,1 (and 1 1,0 11,0 ) rovibronic states yields predominantly HCO fragments with low internal energy, a signature that these rovibronic levels are perturbed by the a ˜ A 2 3 ãA23 state. The results also suggest the need for further careful measurements of the H+HCO H+HCO quantum yield from H 2 CO H2CO photolysis at energies approaching, and above, the barrier to C–H bond fission on the a ˜ A 2 3 ãA23 potential energy surface.
Resumo:
X-ray emission from a comet was observed for the first time in 1996. One of the mechanisms believed to be contributing to this surprisingly strong emission is the interaction of highly charged solar wind ions with cometary gases. Reported herein are total absolute charge-exchange and normalized line-emission (X-ray) cross sections for collisions of high-charge state (+3 to +10) C, N, O, and Ne ions with the cometary species H2O and CO2. It is found that in several cases the double charge-exchange cross sections can be large, and in the case of C3+ they are equal to those for single charge exchange. Present results are compared to cross section values used in recent comet models. The importance of applying accurate cross sections, including double charge exchange, to obtain absolute line-emission intensities is emphasized.
Resumo:
Extreme states of matter such as Warm Dense Matter “WDM” and Dense Strongly Coupled Plasmas “DSCP” play a key role in many high energy density experiments, however creating WDM and DSCP in a manner that can be quantified is not readily feasible. In this paper, isochoric heating of matter by intense heavy ion beams in spherical symmetry is investigated for WDM and DSCP research: The heating times are long (100 ns), the samples are macroscopically large (mm-size) and the symmetry is advantageous for diagnostic purposes. A dynamic confinement scheme in spherical symmetry is proposed which allows even ion beam heating times that are long on the hydrodynamic time scale of the target response. A particular selection of low Z-target tamper and x-ray probe radiation parameters allows to identify the x-ray scattering from the target material and use it for independent charge state measurements Z* of the material under study.
Resumo:
The two-electron QED contributions to the ground-state binding energy of Kr34+ ions have been determined in two independent experiments performed with electron beam ion traps (EBIT) in Heidelberg (HD) and Tokyo (BT, Belfast-Tokyo collaboration). X rays arising from radiative recombination (RR) of free electrons to the ground state of initially bare Kr36+ and hydrogenlike Kr35+ ions were observed as a function of the interacting electron energy. The K edge absorption by thin Eu and W foils provided fixed photon energy references used to measure the difference in binding energy Delta E-2e between the H- and He-like Kr ions (Kr35+ and Kr34+, respectively). The two values agree well, yielding a final result of Delta E-2e=641.8 +/- 1.7 eV, confirming recent results of rigorous QED calculations. This accuracy is just of the order required to access screened radiative QED contributions.