983 resultados para Wild type TTR


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Phosphine (hydrogen phosphide, PH3) is the fumigant most widely used to protect stored products from pest infestation. Despite the importance of this chemical, little is known about its mode of action. We have created three phosphine-resistant lines (pre-1, pre-7, pre-33) in the model organism C. elegans, with LC50 values 2, 5, and 9 times greater than the fully susceptible parental strain. Molecular oxygen was shown to be an extremely effective synergist with phosphine as, under hyperoxic conditions, 100% mortality was observed in wild-type nematodes exposed to 0.1 mg/l phosphine, a nonlethal concentration in air. All three mutants were resistant to the synergistic effects of oxygen in proportion to their resistance to phosphine with one mutant, pre-33, showing complete resistance to this synergism. We take the proportionality of cross-resistance between phosphine and the synergistic effect of oxygen to imply that all three mutants circumvent a mechanism of phosphine toxicity that is directly coupled to oxygen metabolism. Compared with the wild-type strain, all three mutants have an extended average life expectancy of from 12.5 to 25.3%. This is consistent with the proposed involvement of oxidative stress in both phosphine toxicity and ageing. Because the wild-type and mutant nematodes develop at the same rate, the longevity is unlikely to be caused by a clk-type reduction in oxidative metabolism, a potential alternative mechanism of phosphine resistance.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mutations in the E1alpha subunit of the pyruvate dehydrogenase multienzyme complex may result in congenital lactic acidosis, but little is known about the consequences of these mutations at the enzymatic level. Here we characterize two mutants (F205L and T231A) of human pyruvate dehydrogenase in vitro, using the enzyme expressed in Escherichia coli. Wild-type and mutant proteins were purified successfully and their kinetic parameters were measured. F205L shows impaired binding of the thiamin diphosphate cofactor, which may explain why patients carrying this mutation respond to high-dose vitamin B-1 therapy. T231A has very low activity and a greatly elevated K-m for pyruvate, and this combination of effects would be expected to result in severe lactic acidosis. The results lead to a better understanding of the consequences of these mutations on the functional and structural properties of the enzyme, which may lead to improved therapies for patients carrying these mutations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Trans-membrane proteins of the p24 family are abundant, oligomeric proteins predominantly found in cis-Golgi membranes. They are not easily studied in vivo and their functions are controversial. We found that p25 can be targeted to the plasma membrane after inactivation of its canonical KKXX motif (KK to SS, p25SS), and that p25SS causes the co-transport of other p24 proteins beyond the Golgi complex, indicating that wild-type p25 plays a crucial role in retaining p24 proteins in cis-Golgi membranes. We then made use of these observations to study the intrinsic properties of these proteins, when present in a different membrane context. At the cell surface, the p25SS mutant segregates away from both the transferrin receptor and markers of lipid rafts, which are enriched in cholesterol and glycosphingolipids. This suggests that p25SS localizes to, or contributes to form, specialized membrane domains, presumably corresponding to oligomers of p25SS and other p24 proteins. Once at the cell surface, p25SS is endocytosed, together with other p24 proteins, and eventually accumulates in late endosomes, where it remains confined to well-defined membrane regions visible by electron microscopy. We find that this p25SS accumulation causes a concomitant accumulation of cholesterol in late endosomes, and an inhibition of their motility - two processes that are functionally linked. Yet, the p25SS-rich regions themselves seem to-exclude not only Lamp1 but also accumulated cholesterol. One may envision that p25SS accumulation, by excluding cholesterol from oligomers, eventually overloads neighboring late endosomal membranes with cholesterol beyond their capacity (see Discussion). In any case, our data show that p25 and presumably other p24 proteins are endowed with the intrinsic capacity to form highly specialized domains that control membrane composition and dynamics. We propose that p25 and other p24 proteins control the fidelity of membrane transport by maintaining cholesterol-poor membranes in the Golgi complex.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We report a novel activating mutation (E604K) of the calcium-sensing receptor in a family with autosomal dominant hypocalcemia. Whereas all affected individuals exhibited marked hypocalcemia, some cases with untreated hypocalcemia exhibited seizures in infancy, whereas others were largely asymptomatic from birth into adulthood. The missense mutation E604K (G2182A, GenBank accession no. U20759), which affects an amino acid residue in the C terminus of the cysteine-rich domain of the extracellular head, co-segregated with hypocalcemia in all seven individuals for whom DNA was available. Two unaffected, normocalcemic members of the family did not exhibit the mutation. The molecular impact of the mutation on two key components of the signaling response was assessed in HEK-293 cells transiently transfected with cDNA corresponding to either the wild-type calcium-sensing receptor or the E604K mutation derived by site-directed mutagenesis. There was a significant leftward shift in the concentration response curves for the effects of extracellular Ca2+ on both intracellular Ca2+ mobilization (determined by aequorin luminescence) and MAPK activity (determined by luciferase expression). The C terminus of the cysteine-rich domain of the extracellular head may normally act to suppress receptor activity in the presence of low extracellular Ca2+ concentrations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Atm gene-disrupted mice recapitulate the majority of characteristics observed in patients with the genetic disorder ataxia-telangiectasia (A-T). However, although they exhibit defects in neuromotor function and a distinct neurological phenotype, they do not show the progressive neurodegeneration seen in human patients, but there is evidence that ataxia-telangiectasia mutated ( Atm)-deficient animals have elevated levels of oxidized macromolecules and some neuropathology. We report here that in vitro survival of cerebellar Purkinje cells from both Atm knock-out and Atm knock-in mice was significantly reduced compared with their wild-type littermates. Although most of the Purkinje neurons from wild-type mice exhibited extensive dendritic elongation and branching under these conditions, most neurons from Atm-deficient mice had dramatically reduced dendritic branching. An antioxidant ( isoindoline nitroxide) prevented Purkinje cell death in Atm-deficient mice and enhanced dendritogenesis to wild-type levels. Furthermore, administration of the antioxidant throughout pregnancy had a small enhancing effect on Purkinje neuron survival in Atm gene-disrupted animals and protected against oxidative stress in older animals. These data provide strong evidence for a defect in the cerebellum of Atm-deficient mice and suggest that oxidative stress contributes to this phenotype.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Although ATM, the protein defective in ataxia-telangiectasia (A-T), is activated primarily by radiation, there is also evidence that expression of the protein can be regulated by both radiation and growth factors. Computer analysis of the ATM promoter proximal 700-bp sequence reveals a number of potentially important cis-regulatory sequences. Using nucleotide substitutions to delete putative functional elements in the promoter of ATM, we examined the importance of some of these sites for both the basal and the radiation-induced activity of the promoter. In lymphoblastoid cells, most of the mutations in transcription factor consensus sequences [Sp1(1), Sp1(2), Cre, Ets, Xre, gammaIre(2), a modified AP1 site (Fse), and GCF] reduced basal activity to various extents, whereas others [gammaIre(1), NF1, Myb] left basal activity unaffected. In human skin fibroblasts, results were generally the same, but the basal activity varied up to 8-fold in these and other cell lines. Radiation activated the promoter approximately 2.5-fold in serum-starved lymphoblastoid cells, reaching a maximum by 3 hr, and all mutated elements equally blocked this activation. Reduction in Sp1 and AP1 DNA binding activity by serum starvation was rapidly reversed by exposure of cells to radiation. This reduction was not evident in A-T cells, and the response to radiation was less marked. Data provided for interaction between ATM and Sp1 by protein binding and co-immunoprecipitation could explain the altered regulation of Sp1 in A-T cells. The data described here provide additional evidence that basal and radiation-induced regulation of the ATM promoter is under multifactorial control. (C) 2003 Wiley-Liss, Inc.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the rodent central nervous system (CNS) during the five days prior to birth, both growth hormone (GH) and its receptor (GHR) undergo transient increases in expression to levels considerably higher than those found postnatally. This increase in expression coincides with the period of neuronal programmed cell death (PCD) in the developing CNS. To evaluate the involvement of growth hormone in the process of PCD, we have quantified the number of motoneurons in the spinal cord and brain stem of wild type and littermate GHR-deficient mice at the beginning and end of the neuronal PCD period. We found no change in motoneuron survival in either the brachial or lumbar lateral motor columns of the spinal cord or in the trochlear, trigeminal, facial or hypoglossal nuclei in the brain stem. We also found no significant differences in spinal cord volume, muscle fiber diameter, or body weight of GHR-deficient fetal mice when compared to their littermate controls. Therefore, despite considerable in vitro evidence for GH action on neurons and glia, genetic disruption of GHR signalling has no effect on prenatal motoneuron number in the mouse, under normal physiological conditions. This may be a result of compensation by the signalling of other neurotrophic cytokines.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The effects of the native alpha-conotoxin PnIA, its synthetic derivative [ A10L] PnIA and alanine scan derivatives of [ A10L] PnIA were investigated on chick wild type alpha7 and alpha7-L247T mutant nicotinic acetylcholine receptors (nAChRs) expressed in Xenopus oocytes. PnIA and [A10L] PnIA inhibited acetylcholine (ACh)-activated currents at wtalpha7 receptors with IC50 values of 349 and 168 nM, respectively. Rates of onset of inhibition were similar for PnIA and [ A10L] PnIA; however, the rate of recovery was slower for [ A10L] PnIA, indicating that the increased potency of [ A10L] PnIA at alpha7 receptors is conveyed by its slower rate of dissociation from the receptors. All the alanine mutants of [ A10L] PnIA inhibited ACh-activated currents at wtalpha7 receptors. Insertion of an alanine residue between position 5 and 13 and at position 15 significantly reduced the ability of [ A10L] PnIA to inhibit ACh-evoked currents. PnIA inhibited the non-desensitizing ACh-activated currents at alpha7-L247T receptors with an IC50 194 nM. In contrast, [ A10L] PnIA and the alanine mutants potentiated the ACh-activated current alpha7-L247T receptors and in addition [ A10L] PnIA acted as an agonist. PnIA stabilized the receptor in a state that is non-conducting in both the wild type and mutant receptors, whereas [ A10L] PnIA stabilized a state that is non-conducting in the wild type receptor and conducting in the alpha7-L247T mutant. These data indicate that the change of a single amino acid side-chain, at position 10, is sufficient to change the toxin specificity for receptor states in the alpha7-L247T mutant.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Histidines 107 and 109 in the glycine receptor ( GlyR) alpha(1) subunit have previously been identified as determinants of the inhibitory zinc-binding site. Based on modeling of the GlyR alpha(1) subunit extracellular domain by homology to the acetylcholine-binding protein crystal structure, we hypothesized that inhibitory zinc is bound within the vestibule lumen at subunit interfaces, where it is ligated by His(107) from one subunit and His(109) from an adjacent subunit. This was tested by co-expressing alpha(1) subunits containing the H107A mutation with alpha(1) subunits containing the H109A mutation. Although sensitivity to zinc inhibition is markedly reduced when either mutation is individually incorporated into all five subunits, the GlyRs formed by the co-expression of H107A mutant subunits with H109A mutant subunits exhibited an inhibitory zinc sensitivity similar to that of the wild type alpha(1) homomeric GlyR. This constitutes strong evidence that inhibitory zinc is coordinated at the interface between adjacent alpha(1) subunits. No evidence was found for beta subunit involvement in the coordination of inhibitory zinc, indicating that a maximum of two zinc-binding sites per alpha(1)beta receptor is sufficient for maximal zinc inhibition. Our data also show that two zinc-binding sites are sufficient for significant inhibition of alpha(1) homomers. The binding of zinc at the interface between adjacent alpha(1) subunits could restrict intersubunit movements, providing a feasible mechanism for the inhibition of channel activation by zinc.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

It has been reported that Neisseria gonorrhoeae possesses a very high level of catalase activity, but the regulation of catalase expression has not been investigated extensively. In Escherichia coli and Salmonella enterica serovar Typhimurium, it has been demonstrated that OxyR is a positive regulator of hydrogen peroxide-inducible genes, including the gene encoding catalase. The oxyR gene from N. gonorrhoeae was cloned and used to complement an E. coli oxyR mutant, confirming its identity and function. The gene was inactivated by inserting a kanamycin resistance cassette and used to make a knockout allele on the chromosome of N. gonorrhoeae strain 1291. In contrast to E. coli, the N. gonorrhoeae oxyR::kan mutant expressed ninefold-more catalase activity and was more resistant to hydrogen peroxide killing than the wild type. These data are consistent with OxyR in N. gonorrhoeae acting as a repressor of catalase expression.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

One of seven poor metabolizers of coumarin found in Thai subjects was previously genotyped as heterozygote for the CYP2A6*4 (whole deletion) and CYP2A6*9. Thus, we aimed to investigate the relationship between the genetic polymorphism in the TATA box of the CYP2A6 gene (CYP2A6*9), expression levels of CYP2A6 mRNA and coumarin 7-hydroxylase activities in human livers. Levels of CYP2A6 mRNA were quantified by real-time quantitative reverse transcriptase-polymerase chain reaction. The mean expression levels of CYP2A6 mRNA in individuals with CYP2A6*1/*4, CYP2A6*1/*9 and CYP2A6*4/*9 were 58%, 71% and 21% of the individuals genotyped as CYP2A6*1/*1, respectively. The mean in-vitro coumarin 7-hydroxylase activities in subjects carrying CYP2A6*1/*4, CYP2A6*1/*9 and CYP2A6*4/*9 were 41%, 71% and 12%, respectively, compared to those of the subjects judged as wild-type. Vmax values for coumarin 7-hydroxylation in the liver microsomes from human subjects with genotypes of CYP2A6*1/*1, CYP2A6*1/*4, CYP2A6*1/*9 and CYP2A6*4/*9 were 0.58, 0.26, 0.44 and 0.13 nmol/min/nmol total P450, respectively. CYP2A6 protein levels in human liver microsomes with the CYP2A6*4 and the CYP2A6*9 alleles were markedly decreased. These results suggest that the genetic polymorphism in the promoter region of the CYP2A6 gene (CYP2A6*9) reduced the expression levels of CYP2A6 mRNA and protein in human livers, resulting in the decrease of coumarin 7-hydroxylase activities. Individuals judged as CYP2A6*4/*9 were expected to be poor metabolizers, having extremely low activity of CYP2A6.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pili of Neisseria meningitidis are a key virulence factor, being the major adhesin of this capsulate organism and contributing to specificity for the human host. Pili are post-translationally modified by addition of either an O-linked trisaccharide, Gal (beta1-4) Gal (alpha1-3) 2,4-diacetamido-2,4,6-trideoxyhexose or an O-linked disaccharide Gal (alpha1,3) GlcNAc. The role of these structures in meningococcal pathogenesis has not been resolved. In previous studies we identified two separate genetic loci, pglA and pglBCD, involved in pilin glycosylation. Putative functions have been allocated to these genes; however, there are not enough genes to account for the complete biosynthesis of the described structures, suggesting additional genes remain to be identified. In addition, it is not known why some strains express the trisaccharide structure and some the disaccharide structure. In order to find additional genes involved in the biosynthesis. of these structures, we used the recently published group A strain Z2491 and group B strain MC58 Neisseria meningitidis genomes and the unfinished Neisseria meningitidis group C strain FAM18 and Neisseria gonorrhoeae strain FA1090 genomes to identify novel genes involved in pilin glycosylation, based on homology to known oligosaccharide biosynthetic genes. We identified a new gene involved in pilin glycosylation designated pglE and examined four additional genes pgIB/B2, pglF, pglG and pglH. A strain survey revealed that pglE and pglF were present in each strain examined. The pglG, pglH and pgIB2 polymorphisms were not found in strain C311#3 but were present in a large number of clinical isolates. Insertional mutations were constructed in pglE and pglF in N. meningitidis strain C311#3, a strain with well-defined lipopolysaccharide (LPS) and pilin-linked glycan structures. Increased gel migration of the pilin subunit molecules of pglE and pglF mutants was observed by Western analysis, indicating truncation of the trisaccharide structure. Antisera specific for the C311#3 trisaccharide failed to react with pilin from these pglE and pglF mutants. GC-MS analysis of the sugar composition of the pglE mutant showed a reduction in galactose compared with C311#3 wild type. Analysis of amino acid sequence homologies has suggested specific roles for pglE and pglF in the biosynthesis of the trisaccharide structure. Further, we present evidence that pglE, which contains heptanucleotide repeats, is responsible for the phase variation between trisaccharide and disaccharide structures in strain C311#3 and other strains. We also present evidence that pglG, pglH and pgIB2 are potentially phase variable.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Acute physical exercise is associated with increased oxygen consumption, which could result in an increased formation of reactive oxygen species (ROS). ROS can react with several organic structures, namely DNA, causing strand breaks and a variety of modified bases in DNA. Physical exercise training seems to decrease the incidence of oxidative stress-associated diseases, and is considered as a key component of a healthy lifestyle. This is a result of exercise-induced adaptation, which has been associated with the possible increase in antioxidant activity and in oxidative damage repair enzymes, leading to an improved physiological function and enhanced resistance to oxidative stress (Radak et al. 2008). Human 8-oxoguanine DNA glycosylase 1 (hOGG1) is involved in the base excision repair (BER) pathway and encodes an enzyme responsible for removing the most common product of oxidative damage in DNA, 8-hydroxyguanine (8-OH-G). The genetic polymorphism of hOGG1 at codon 326 results in a serine (Ser) to cysteine (Cys) amino acid substitution (Ser326Cys). It has been suggested that the carriers of at least one hOGG1Cys variant allele exhibit lower 8-OH-G excision activity than the wild-type (Wilson et al. 2011). The aim of this study was to investigate the possible influence of hOGG1 Ser326Cys polymorphism on DNA damage and repair activity in response to 16 weeks of combined physical exercise training, in thirty healthy Caucasian men. Comet assay was carried out using peripheral blood lymphocytes and enabled the evaluation of DNA damage, both strand breaks and FPG-sensitive sites, and DNA repair activity. Genotypes were determined by PCR-RFLP analysis. The subjects with Ser/Ser genotype were considered as wild-type group (n=20), Ser/Cys and Cys/Cys genotype were analyzed together as mutant group (n=10). Regarding differences between pre and post-training in the wild-type group, the results showed a significant decrease in DNA strand breaks (DNA SBs) (p=0.002) and also in FPG-sensitive sites (p=0.017). No significant differences were observed in weight (p=0.389) and in lipid peroxidation (MDA) (p=0.102). A significant increase in total antioxidant capacity (evaluated by ABTS) was observed (p=0.010). Regarding mutant group, the results showed a significant decrease in DNA SBs (p=0.008) and in weight (p=0.028). No significant differences were observed in FPG-sensitive sites (p=0.916), in ABTS (p=0.074) and in MDA (p=0.086). No significant changes in DNA repair activity were observed in both genotype groups. This preliminary study suggests the possibility of different responses in DNA damage to physical exercise training, considering the hOGG1 Ser326Cys polymorphism.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordination of apical constriction in epithelial sheets is a fundamental process during embryogenesis. Here, we show that DRhoGEF2 is a key regulator of apical pulsation and constriction of amnioserosal cells during Drosophila dorsal closure. Amnioserosal cells mutant for DRhoGEF2 exhibit a consistent decrease in amnioserosa pulsations whereas overexpression of DRhoGEF2 in this tissue leads to an increase in the contraction time of pulsations. We probed the physical properties of the amnioserosa to show that the average tension in DRhoGEF2 mutant cells is lower than wild-type and that overexpression of DRhoGEF2 results in a tissue that is more solid-like than wild-type. We also observe that in the DRhoGEF2 overexpressing cells there is a dramatic increase of apical actomyosin coalescence that can contribute to the generation of more contractile forces, leading to amnioserosal cells with smaller apical surface than wild-type. Conversely, in DRhoGEF2 mutants, the apical actomyosin coalescence is impaired. These results identify DRhoGEF2 as an upstream regulator of the actomyosin contractile machinery that drives amnioserosa cells pulsations and apical constriction.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The conventional methods used to evaluate chitin content in fungi, such as biochemical assessment of glucosamine release after acid hydrolysis or epifluorescence microscopy, are low throughput, laborious, time-consuming, and cannot evaluate a large number of cells. We developed a flow cytometric assay, efficient, and fast, based on Calcofluor White staining to measure chitin content in yeast cells. A staining index was defined, its value was directly related to chitin amount and taking into consideration the different levels of autofluorecence. Twenty-two Candida spp. and four Cryptococcus neoformans clinical isolates with distinct susceptibility profiles to caspofungin were evaluated. Candida albicans clinical isolate SC5314, and isogenic strains with deletions in chitin synthase 3 (chs3Δ/chs3Δ) and genes encoding predicted Glycosyl Phosphatidyl Inositol (GPI)-anchored proteins (pga31Δ/Δ and pga62Δ/Δ), were used as controls. As expected, the wild-type strain displayed a significant higher chitin content (P < 0.001) than chs3Δ/chs3Δ and pga31Δ/Δ especially in the presence of caspofungin. Ca. parapsilosis, Ca. tropicalis, and Ca. albicans showed higher cell wall chitin content. Although no relationship between chitin content and antifungal drug susceptibility phenotype was found, an association was established between the paradoxical growth effect in the presence of high caspofungin concentrations and the chitin content. This novel flow cytometry protocol revealed to be a simple and reliable assay to estimate cell wall chitin content of fungi.