917 resultados para White, G. Anderson
Resumo:
Little is known about epidemiological markers that are associated with survival of patients with myelodysplastic syndromes (MDS). We conducted a secondary case-based analysis of 465 de novo MDS patients from the University of Texas MD Anderson Cancer Center (UTMDACC). We investigated the association between demographic as well as occupational exposure markers and survival while incorporating known clinical markers of prognosis. In our patient population, 60.6% were men and the majority were white (93.1%). The distribution of MDS subtypes by the French–American–British (FAB) classification was 81 (19%) refractory anemia (RA), 46 (9.9%) refractory anemia with ringed sideroblasts (RARS), 57 (12.3%) chronic myelomonocytic leukemia (CMML), 173 (37.2%) RA with excess blasts (RAEB), and 86 (18.5%) RAEB in transformation (RAEBT). We found that those older at diagnosis (> 60 years of age) (HR = 1.68, CI = 1.26-2.25) were at a higher risk of dying compared to younger patients. Similarly, high pack years of smoking (>= 30 pack years of smoking) (HR = 1.34, CI = 1.02-1.74), and agricultural chemical exposure (HR = 1.61, CI = 1.05-2.46) were significantly associated with overall lower survival when compared to patients with none or medium exposures. Among clinical markers, greater than 5% bone marrow blasts (HR = 1.81 CI = 1.27-2.56), poor cytogenetics (HR = 3.20, CI = 2.37-4.33)), and platelet cytopenias (<100000/ul) (HR = 1.46, CI = 1.11-1.92) were also significantly associated with overall MDS survival.^ The identification of epidemiological markers could help physicians stratify patients and customize treatment strategies to improve the outcome of MDS based on patient lifestyle information such as smoking exposure and agrochemical exposure. We hope that this study highlights the impact of these exposures in MDS prognosis.^
Resumo:
Hispanics form the second-largest minority group in the United States totaling 22 million people. Health data on this population are sparse and inconsistent. This study seeks to determine use of preventative services and risk factor behaviors of Mexican American and non-Hispanic White females residing in South Texas.^ Baseline data from female respondents in household surveys in six South Texas counties (Ramirez and McAlister, 1988; McAlister et al., 1992) were analyzed to test the following hypotheses: (1) Mexican American and Non-Hispanic White females exhibit different patterns of health behaviors; (2) Mexican American females will exhibit different health behaviors regardless of age; and (3) the differences between Mexican American women and non-Hispanic White females are due to education and acculturation factors.^ Over the past decade, the traditional behaviors of Mexican American females have begun to change due to education, acculturation, and their participation in the labor force. The results from this study identify some of the changes that will require immediate attention from health care providers. Results revealed that regardless of ethnicity, age, education, and language preference, non-Hispanic White females were significantly more likely to participate in preventive screening practices than were Mexican American females. Risk factor analysis revealed a different pattern with Mexican American females significantly more likely to be non-smokers, non-alcoholic drinkers, and to have good fat avoidance practices compared to non-Hispanic White females. However, compared to those who are less-educated or Spanish-speaking, Mexican American females with higher levels of education and preference for speaking English only showed positive and negative health behaviors that were more similar to the non-Hispanic White females. The positive health behaviors that come with acculturation, e.g., more participation in preventive care and more physical activity, are welcome changes. But this study has implications for global health development and reinforces a need for "primordial" prevention strategies to deter the unwanted concomitants of economic development and acculturation. Smoking and drinking behaviors among Mexican American females need to be kept at low levels to prevent increased morbidity and premature deaths in this population. ^
Resumo:
Analysis of composition and distribution of benthic foraminifers in six samples of bottom sediments obtained in the southeast Kandalaksha Bay of the White Sea at water depths of 20 to 155 m revealed their dependence on lithology and different hydrological characteristics. It is shown that living foraminifers populating relatively shallow areas of the bay (20-60 m), which are bathed by seasonally warmed intermediate water with temperature 0.7-1.5°C and salinity 26 per mil, are characterized by high abundance (250-750 specimens/10 ccm of wet sediment) and prevalence of agglutinated species (Eggerella advena, Recurvoides turbinatus, and others). Deeper (155 m) where cold and relatively saline deep water occurs (-1.4°C, 29.5 per mil), abundance is an order lower (30 specimens/10 ccm) and is dominated by calcareous taxa Cassidulina reniforme, an Arctic cold resistant species.
Resumo:
Melt pond covered sea ice is a ubiquitous feature of the summertime Arctic Ocean when meltwater collects in lower-lying areas of ice surfaces. Horizontal transects were conducted during June 2008 above and below landfast sea ice with melt ponds to characterize surface and bottom topography together with variations in transmitted spectral irradiance. We captured a rapid progression from a highly flooded sea ice surface with lateral drainage toward flaws and seal breathing holes to the formation of distinct melt ponds with steep edges. As the mass of the ice cover decreased due to meltwater drainage and rose upward with respect to the seawater level, the high-scattering properties of ice above the water level (i.e., white ice) were continuously regenerated, while pond waters remained transparent compared to underlying ice. The relatively stable albedos observed throughout the study, even as ice thickness decreased, were directly related to these surface processes. Transmission through the ice cover of incident irradiance in the 400-700 nm wave band ranged from 38% to 67% and from 5% to 16% beneath ponded and white ice, respectively. Our results show that this transmission varied not only as a function of surface type (melt ponds or white ice) areal coverage but also in relation to ice thickness and proximity to other surface types through the influence of horizontal spreading of light. Thus, in contrast to albedo, this implies that regional transmittance estimates need to consider melt pond size and shape distributions and variations in optical properties and thickness of the ice cover.
Resumo:
Iron and manganese in bottom sediments studied along the sublatitudinal transect from Kandalaksha to Arkhangelsk are characterized by various contents and speciations depending on sedimentation environment, grain size of sediments, and diagenetic processes. The latter include redistribution of reactive forms leading to enrichment in Fe and Mn of surface sediments, formation of films, incrustations, and ferromanganese nodules. Variations in total Fe content (2-8%) are accompanied by changes in concentration of its reactive forms (acid extraction) and concentration of dissolved Fe in interstitial waters (1-14 µM). Variations in Mn content in bottom sediments (0.03-3.7%) and interstitial waters (up to 500 µM) correspond to high diagenetic mobility of this element. Changes in oxidation degree of chemical elements result in redox stratification of sediment strata with maximum concentrations of Fe, Mn, and sulfides. Organic matter of bottom sediments with considerable terrestrial constituent is oxidized by bottom water oxygen mainly at the sediment surface or in anaerobic conditions within the sediment strata. The role of inorganic components in organic matter oxidation changes from surface layer bottom sediments (where manganese oxyhydroxide dominates among oxidants) to deeper layers (where sulfate of interstitial water serves as the main oxidant). Differences in river runoff and hydrodynamics are responsible for geochemical asymmetry of the transect. The deep Kandalaksha Bay serves as a sediment trap for manganese (Mn content in sediments varies within 0.5-0.7%), whereas the sedimentary environment in the Dvina Bay promotes its removal from bottom sediments (Mn 0.05%).
Resumo:
The paper reports data on concentrations of organic compounds (organic carbon, lipids; aliphatic hydrocarbons, and polycyclic aromatic hydrocarbons) in snow, ice, and sub-ice waters from the mouth of the Severnaya Dvina River in March 2005-2007 and the Kandalaksha Gulf (Chupa Bay) in March 2004. It was established that organic compounds are accumulated in snow and the upper ice layer near Archangelsk city. Distribution of molecular markers indicates that pollutions were mainly caused by local fallouts. In the Chupa Bay organic compounds are concentrated in the lower ice layer; it is typical for Arctic snow-ice cover. High contents of organic compounds in the snow-ice cover of the White Sea are caused by pollution of air and water during the winter season.
Resumo:
Upwelling occurs during the summer off the coast of Oman when the Asian monsoon produces strong southwest winds in the northern Arabian Sea. Ekman transport driven by the southwest monsoon winds upwells cool nutrient-rich waters along the coast which contrast with the warmer, less productive waters offshore. The spatial pattern of foraminifers in the sediments corresponds with the coastal environmental gradient. The upwelling species Globigerina bulloides dominates the sediment assemblage on the continental margin, while Globigerinita glutinata is more abundant offshore, creating a coastal gradient in fauna. We reconstructed the upwelling faunal gradient using high resolution oxygen isotope stratigraphy to correlate between Hole 723B on the Oman Margin, and a core from the Owen Ridge (RC2761), adjacent Site 722. A gradient similar in magnitude to the present, implying upwelling conditions similar to today existed during each interglacial time during the late Pleistocene interval from 0 to 300 k.y. The gradient was reduced or absent during glacial times implying diminshed southwest winds along the coast of Oman, not strong enough to produce an environmental gradient between the coast and offshore sites.
Resumo:
Data on distribution of zoobenthos in the Kemskaya Guba (or Kemskaya Bay - the estuary of the Kem' River entering the Onega Bay of the White Sea), which is strongly influenced by river runoff, are presented. The number of species at sampling stations varied from 4 to 65. Density of communities and zoobenthos biomass varied from 342±68 to 4293±96 #/m**2 and from 0.418±0.081 to 1975.22±494.36 g/m**2, respectively. Shannon index values varied between 1.19 to 4.7 bit/ind. At the upper part of the estuary, detritivores dominated, while in the central part and at outlets sestonophages prevailed. Changes in quantitative parameters of the zoobenthos along gradient of water salinity were traced, and relations of these parameters with seven other environmental factors were revealed. It was found that species composition, biodiversity, and trophic structure of the zoobenthos significantly correlated with some of parameters mentioned above. Multiple regression analysis was used to assess combined effect of factors, and it revealed which of them played a determining role in Kemskaya Guba: for species composition - depth, water color, and total concentration of suspended matter; for number of species - contents of <0.01 mm grain size (pelite) fraction and organic carbon in bottom sediments. Biomass depended on water salinity, water chromaticity, and organic carbon contents in bottom sediments and suspended matter. Values of the Shannon index of diversity are determined by water color, and contents of organic carbon and pelite fraction in bottom sediments. Calculations of ecological stress values revealed two zones with unstable state of the zoobenthos.
Resumo:
Vertical fluxes of phytoplankton (VF_phyto) and particulate organic carbon (VF_POC) in the White Sea were determined using seven long-term (292 to 296 days) sediment traps moored at five stations at depths 67 to 255 m. Annual VF_phyto and VF_POC ranged from 0.55 to 24.64 g C/m**2 and from 3.7 to 93.9 g C/m**2, respectively. The highest VF_phyto was observed in the Basin region located close to the Gorlo along the Tersk coast. Algal biomass accounted for 15-43% of VF_pOC. Diatoms comprised the most important group accounting for 83-100% in sinking biomass. Thalassiosira nordenskioeldii dominated in VF_phyto at all trap stations except for one in the Basin close to the Onega Bay, where Ditylum brightwellii was the most abundant.
Resumo:
This publication presents results of microbiological and biogeochemical studies in the White Sea. Material was obtained during a series of expeditions in 1999-2002. The studies were carried out in the open part of the White Sea, in the Onega, Dvina and Kandalaksha Bays, as well as in the intertidal zone of the Kandalaksha Bay. Quantitative characteristics of activity of microbial processes in waters and bottom sediments of the White Sea were obtained. The total number of bacteria was equal to 150000-800000 cells/ml, and intensity of dark CO2 assimilation was equal to 0.9-17 µg C/l/day. Bacterial sulfate reduction was equal to 3-150 mg S/m**2/day, and methane formation and oxidation was equal to 13-6840 and 20-14650 µl CH4/m**2/day, respectively. Extremely high values of intensity of all principal microbial processes were found in intertidal sediments rich in organic matter: under decomposing macrophytes, in local pits at the lower intertidal boundary, and in the mouth of a freshwater brook. Average hydrogen sulfide production in highly productive intertidal sediments was 1950-4300 mg S/m**2/day, methane production was 0.5-8.7 ml CH4/m**2/day, and intensity of methane oxidation was up to 17.5 ml CH4/m**2/day. Calculations performed with account for areas occupied by microlandscapes of increased productivity showed that diurnal production of H2S and CH4 per 1 km**2 of the intertidal zone (August) was estimated as 60.8-202 kg S/km**2/day and 192-300 l CH4/km**2/day, respectively.
Resumo:
The glacial marine isotope stage 14 (MIS 14) appears in many climate records as an unusually warm glacial. During this period an almost monospecific, up to 1.5 m thick, laminated layer of the giant diatom Ethmodiscus rex has been deposited below the South Atlantic Subtropical Gyre. This oligotrophic region is today less favorable for diatom growth with sediments typically consisting of calcareous nannofossil oozes. We have reconstructed temperatures and the stable oxygen isotopic compositions of sea surface and thermocline water (d18Ow) from planktonic foraminiferal (Globigerinoides ruber and Globorotalia inflata) Mg/Ca and stable oxygen isotopes to test whether perturbations in surface ocean conditions contributed to the deposition of the diatom layer at ~530 kyr B.P. Temperatures and d18Ow values reconstructed from this diatom ooze interval are highly variable, with maxima similar to interglacial values. Since the area of the Ethmodiscus oozes resembles the region where Agulhas rings are present, we interpret these hydrographic changes to reflect the varying influence of warm and saline water of Indian Ocean origin that entered the Subtropical Gyre trapped in Agulhas rings. The formation of the Ethmodiscus oozes is associated with a period of maximum Agulhas leakage and a maximum frequency of Agulhas ring formation caused by a termination-type position of the Subtropical Front during the unusual warm MIS 14. The input of silica through the Agulhas rings enabled the shift in primary production from calcareous nannoplankton to diatoms, leading to the deposition of the massive diatom oozes.
Resumo:
A large fraction of the carbon dioxide added to the atmosphere by human activity enters the sea, causing ocean acidification. We show that otoliths (aragonite ear bones) of young fish grown under high CO2 (low pH) conditions are larger than normal, contrary to expectation. We hypothesize that CO2 moves freely through the epithelium around the otoliths in young fish, accelerating otolith growth while the local pH is controlled. This is the converse of the effect commonly reported for structural biominerals.
Resumo:
Dinoflagellate cysts were studied in 42 samples from surface sediments of the White Sea. Total concentration of dinocysts varies from single cysts to 25000 cyst/g of dry sediments, which reflects biological productivity in White Sea waters and regional particular features of sedimentation processes. The highest concentrations are observed in silts; they are related to the regions of propagation of highly productive Barents Sea waters in the White Sea. Generally, spatial distribution of dinocyst species in the surface sediments corresponds to distribution of the major types of water masses in the White Sea. Cysts of relatively warm-water species (Operculodinium centrocarpum, Spiniferites sp.) of North Atlantic origin that dominate in the sediments indicate an intensive intrusion of Barents Sea water masses to the White Sea along with hydrological dwelling conditions in the White Sea favorable for development of these species during their vegetation period. The cold-water dinocyst assemblage (Islandinium minutum, Polykrikos sp.) is rather strictly confined to inner parts of shallow-water bays, firstly, those adjacent to the Onega and Severnaya Dvina river mouths.