997 resultados para Wave Prediction
Resumo:
A design methodology for wave-absorbing active material system is reported. The design enforces equivalence between an assumed material model having wave-absorbing behavior and a set of target feedback controllers for an array of microelectro-mechanical transducers which are integral part of the active material system. The proposed methodology is applicable to problems involving the control of acoustic waves in passive-active material system with complex constitutive behavior at different length-scales. A stress relaxation type one-dimensional constitutive model involving viscous damping mechanism is considered, which shows asymmetric wave dispersion characteristics about the half-line. The acoustic power flow and asymptotic stability of such material system are studied. A single sensor non-collocated linear feedback control system in a one-dimensional finite waveguide, which is a representative volume element in an active material system, is considered. Equivalence between the exact dynamic equilibrium of these two systems is imposed. It results in the solution space of the design variables, namely the equivalent damping coefficient, the wavelength(s) to be controlled and the location of the sensor. The characteristics of the controller transfer functions and their pole-placement problem are studied. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
One of the most fundamental and widely accepted ideas in finance is that investors are compensated through higher returns for taking on non-diversifiable risk. Hence the quantification, modeling and prediction of risk have been, and still are one of the most prolific research areas in financial economics. It was recognized early on that there are predictable patterns in the variance of speculative prices. Later research has shown that there may also be systematic variation in the skewness and kurtosis of financial returns. Lacking in the literature so far, is an out-of-sample forecast evaluation of the potential benefits of these new more complicated models with time-varying higher moments. Such an evaluation is the topic of this dissertation. Essay 1 investigates the forecast performance of the GARCH (1,1) model when estimated with 9 different error distributions on Standard and Poor’s 500 Index Future returns. By utilizing the theory of realized variance to construct an appropriate ex post measure of variance from intra-day data it is shown that allowing for a leptokurtic error distribution leads to significant improvements in variance forecasts compared to using the normal distribution. This result holds for daily, weekly as well as monthly forecast horizons. It is also found that allowing for skewness and time variation in the higher moments of the distribution does not further improve forecasts. In Essay 2, by using 20 years of daily Standard and Poor 500 index returns, it is found that density forecasts are much improved by allowing for constant excess kurtosis but not improved by allowing for skewness. By allowing the kurtosis and skewness to be time varying the density forecasts are not further improved but on the contrary made slightly worse. In Essay 3 a new model incorporating conditional variance, skewness and kurtosis based on the Normal Inverse Gaussian (NIG) distribution is proposed. The new model and two previously used NIG models are evaluated by their Value at Risk (VaR) forecasts on a long series of daily Standard and Poor’s 500 returns. The results show that only the new model produces satisfactory VaR forecasts for both 1% and 5% VaR Taken together the results of the thesis show that kurtosis appears not to exhibit predictable time variation, whereas there is found some predictability in the skewness. However, the dynamic properties of the skewness are not completely captured by any of the models.
Resumo:
The swelling pressure of soil depends upon various soil parameters such as mineralogy, clay content, Atterberg's limits, dry density, moisture content, initial degree of saturation, etc. along with structural and environmental factors. It is very difficult to model and analyze swelling pressure effectively taking all the above aspects into consideration. Various statistical/empirical methods have been attempted to predict the swelling pressure based on index properties of soil. In this paper, the computational intelligence techniques artificial neural network and support vector machine have been used to develop models based on the set of available experimental results to predict swelling pressure from the inputs; natural moisture content, dry density, liquid limit, plasticity index, and clay fraction. The generalization of the model to new set of data other than the training set of data is discussed which is required for successful application of a model. A detailed study of the relative performance of the computational intelligence techniques has been carried out based on different statistical performance criteria.
Resumo:
The swelling pressure of soil depends upon various soil parameters such as mineralogy, clay content, Atterberg's limits, dry density, moisture content, initial degree of saturation, etc. along with structural and environmental factors. It is very difficult to model and analyze swelling pressure effectively taking all the above aspects into consideration. Various statistical/empirical methods have been attempted to predict the swelling pressure based on index properties of soil. In this paper, the computational intelligence techniques artificial neural network and support vector machine have been used to develop models based on the set of available experimental results to predict swelling pressure from the inputs; natural moisture content, dry density, liquid limit, plasticity index, and clay fraction. The generalization of the model to new set of data other than the training set of data is discussed which is required for successful application of a model. A detailed study of the relative performance of the computational intelligence techniques has been carried out based on different statistical performance criteria.
Resumo:
Grover's database search algorithm, although discovered in the context of quantum computation, can be implemented using any physical system that allows superposition of states. A physical realization of this algorithm is described using coupled simple harmonic oscillators, which can be exactly solved in both classical and quantum domains. Classical wave algorithms are far more stable against decoherence compared to their quantum counterparts. In addition to providing convenient demonstration models, they may have a role in practical situations, such as catalysis.
Resumo:
This paper deals with the simulation-driven study of the impact of hardened steel projectiles on thin aluminium target plates using explicit finite element analysis as implemented in LS-DYNA. The evaluation of finite element modelling includes a comprehensive mesh convergence study using shell elements for representing target plates and the solid element-based representation of ogivalnosed projectiles. A user-friendly automatic contact detection algorithm is used for capturing interaction between the projectile and the target plate. It is shown that the proper choice of mesh density and strain rate-dependent material properties is crucial as these parameters significantly affect the computed residual velocity. The efficacy of correlation with experimental data is adjudged in terms of a 'correlation index' defined in the present study for which values close to unity are desirable.By simulating laboratory impact tests on thin aluminium plates carried out by earlier investigators, extremely good prediction of experimental ballistic limits has been observed with correlation indices approaching unity. Additional simulation-based parametric studies have been carried out and results consistent with test data have been obtained. The simulation procedures followed in the present study can be applied with confidence in designing thin aluminium armour plates for protection against low calibre projectiles.
Resumo:
A microscopic theory of equilibrium solvation and solvation dynamics of a classical, polar, solute molecule in dipolar solvent is presented. Density functional theory is used to explicitly calculate the polarization structure around a solvated ion. The calculated solvent polarization structure is different from the continuum model prediction in several respects. The value of the polarization at the surface of the ion is less than the continuum value. The solvent polarization also exhibits small oscillations in space near the ion. We show that, under certain approximations, our linear equilibrium theory reduces to the nonlocal electrostatic theory, with the dielectric function (c(k)) of the liquid now wave vector (k) dependent. It is further shown that the nonlocal electrostatic estimate of solvation energy, with a microscopic c(k), is close to the estimate of linearized equilibrium theories of polar liquids. The study of solvation dynamics is based on a generalized Smoluchowski equation with a mean-field force term to take into account the effects of intermolecular interactions. This study incorporates the local distortion of the solvent structure near the ion and also the effects of the translational modes of the solvent molecules.The latter contribution, if significant, can considerably accelerate the relaxation of solvent polarization and can even give rise to a long time decay that agrees with the continuum model prediction. The significance of these results is discussed.
Resumo:
This paper reviews computational reliability, computer algebra, stochastic stability and rotating frame turbulence (RFT) in the context of predicting the blade inplane mode stability, a mode which is at best weakly damped. Computational reliability can be built into routine Floquet analysis involving trim analysis and eigenanalysis, and a highly portable special purpose processor restricted to rotorcraft dynamics analysis is found to be more economical than a multipurpose processor. While the RFT effects are dominant in turbulence modeling, the finding that turbulence stabilizes the inplane mode is based on the assumption that turbulence is white noise.
Resumo:
An application of Artificial Neural Networks for predicting the stress-strain response of jointed rocks under different confining pressures is presented in this paper. Rocks of different compressive strength with different joint properties (frequency, orientation and strength of joints) are considered in this study. The database for training the neural network is formed from the results of triaxial compression tests on different intact and jointed rocks with different joint properties tested at different confining pressures reported by various researchers in the literature. The network was trained using a three-layered network with the feed-forward back propagation algorithm.About 85% of the data was used for training and the remaining 15% was used for testing the network. Results from the analyses demonstrated that the neural network approach is effective in capturing the stress-strain behaviour of intact rocks and the complex stress-strain behaviour of jointed rocks. A single neural network is demonstrated to be capable of predicting the stress-strain response of different jointed rocks, whose intact strength varies from 11.32 MPa to 123 MPa, spacing of joints varies from 10 cm to 100 cm. and confining pressures range from 0 to 13.8 MPa. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
This paper describes the design and development of a Fiber Bragg Grating (FBG) sensor system for monitoring tsunami waves generated in the deep ocean. An experimental setup was designed and fabricated to simulate the generation and propagation of a tsunami wave. The characteristics and efficiency of the developed FBG sensor was evaluated with a standard commercial Digiquartz sensor. For real time monitoring of tsunami waves, FBG sensors bonded to a cantilever is used and the wavelength shifts (Delta lambda(B)) in the reflected spectra resulting from the strain/pressure imparted on the FBGs have been recorded using a high-speed Micron Optics FBG interrogation system. The parameters sensed are the signal burst during tsunami generation and pressure variations at different places as the tsunami wave propagates away from the source of generation. The results obtained were compared with the standard commercial sensor used in tsunami detection. The observations suggest that the FBG sensor was highly sensitive and free from many of the constraints associated with the commercial tsunameter.
Resumo:
This paper describes a predictive model for breakout noise from an elliptical duct or shell of finite length. The transmission mechanism is essentially that of ``mode coupling'', whereby higher structural modes in the duct walls get excited because of non-circularity of the wall. Effect of geometry has been taken care of by evaluating Fourier coefficients of the radius of curvature. The noise radiated from the duct walls is represented by that from a finite vibrating length of a semi infinite cylinder in a free field. Emphasis is on understanding the physics of the problem as well as analytical modeling. The analytical model is validated with 3-D FEM. Effects of the ovality, curvature, and axial terminations of the duct have been demonstrated. (C) 2010 Institute of Noise Control Engineering.
Resumo:
A modified linear prediction (MLP) method is proposed in which the reference sensor is optimally located on the extended line of the array. The criterion of optimality is the minimization of the prediction error power, where the prediction error is defined as the difference between the reference sensor and the weighted array outputs. It is shown that the L2-norm of the least-squares array weights attains a minimum value for the optimum spacing of the reference sensor, subject to some soft constraint on signal-to-noise ratio (SNR). How this minimum norm property can be used for finding the optimum spacing of the reference sensor is described. The performance of the MLP method is studied and compared with that of the linear prediction (LP) method using resolution, detection bias, and variance as the performance measures. The study reveals that the MLP method performs much better than the LP technique.