930 resultados para Warning devices.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

MOS gated power devices are now available for power switching applications with voltage blocking requirements up to 1 kV and current ratings up to 300A. This is due to the invention of the IGBT, a device in which MOS gate turn-on leads to minority carrier injection to modulate the high resistance drift region required for voltage blocking. The paper presents current technologies being developed in order to expand the applications of MOS gated power devices. Also explained is the available trench gate technology that can be used to fabricate power devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Trench Insulated Gate Bipolar Transistor (IGBT) is the most promising structure for the next generation of power semiconductor devices with wide applications ranging from motor control (1-4 kV) to HVDC (6.5 kV). Here we present for the first time an optimum design of a 1.4kV Trench IGBT using a new, fully integrated optimisation system comprising process and device simulators and the RSM optimiser. The use of this new TCAD system has contributed largely to realizing devices with characteristics far superior to the previous DMOS generation of IGBTs. Full experimental results on 1.4kV Trench IGBTs which are in excellent agreement with the TCAD predictions are reported.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An extended computational model of the circulatory system has been developed to predict blood flow in the presence of ventricular assist devices (VADs). A novel VAD, placed in the descending aorta, intended to offload the left ventricle (LV) and augment renal perfusion is being studied. For this application, a better understanding of the global hemodynamic response of the VAD, in essence an electrically driven pump, and the cardiovascular system is necessary. To meet this need, a model has been established as a nonlinear, lumped-parameter electrical analog, and simulated results under different states [healthy, congestive heart failure (CHF), and postinsertion of VAD] are presented. The systemic circulation is separated into five compartments and the descending aorta is composed of three components to accurately yield the system response of each section before and after the insertion of the VAD. Delays in valve closing time and blood inertia in the aorta were introduced to deliver a more realistic model. Pump governing equations and optimization are based on fundamental theories of turbomachines and can serve as a practical initial design point for rotary blood pumps. The model's results closely mimic established parameters for the circulatory system and confirm the feasibility of the intra-aortic VAD concept. This computational model can be linked with models of the pump motor to provide a valuable tool for innovative VAD design.