957 resultados para WHOLE-GENOME AMPLIFICATION


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have analysed the whole mitochondrial (mt) genome sequences (each ~6 kilo nucleotide base pairs in length) of four field isolates of the malaria parasite Plasmodium falciparum collected from different locations in India. Comparative genomic analyses of mt genome sequences revealed three novel India-specific single nucleotide polymorphisms. In general, high mt genome diversity was found in Indian P. falciparum, at a level comparable to African isolates. A population phylogenetic tree placed the presently sequenced Indian P. falciparum with the global isolates, while a previously sequenced Indian isolate was an outlier. Although this preliminary study is limited to a few numbers of isolates, the data have provided fundamental evidence of the mt genome diversity and evolutionary relationships of Indian P. falciparum with that of global isolates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The complete genome sequence of bovine papillomavirus 2 (BPV2) from Brazilian Amazon Region was determined using multiple-primed rolling circle amplification followed by Illumina sequencing. The genome is 7,947 bp long, with 45.9% GC content. It encodes seven early (E1, E2,E4, E5, E6,E7, and E8) and two late (L1 and L2) genes. The complete genome of a BPV2 can help in future studies since this BPV type is highly reported worldwide although the lack of complete genome sequences available.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The recently released Affymetrix Human Gene 1.0 ST array has two major differences compared with standard 3' based arrays: (i) it interrogates the entire mRNA transcript, and (ii) it uses DNA targets. To assess the impact of these differences on array performance, we performed a series of comparative hybridizations between the Human Gene 1.0 ST and the Affymetrix HG-U133 Plus 2.0 and the Illumina HumanRef-8 BeadChip arrays. Additionally, both RNA and DNA targets were hybridized on HG-U133 Plus 2.0 arrays. The results show that the overall reproducibility of the Gene 1.0 ST array is best. When looking only at the high intensity probes, the reproducibility of the Gene 1.0 ST array and the Illumina BeadChip array is equally good. Concordance of array results was assessed using different inter-platform mappings. Agreements are best between the two labeling protocols using HG-U133 Plus 2.0 array. The Gene 1.0 ST array is most concordant with the HG-U133 array hybridized with cDNA targets. This may reflect the impact of the target type. Overall, the high degree of correspondence provides strong evidence for the reliability of the Gene 1.0 ST array.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report a new set of nine primer pairs specifically developed for amplification of Brassica plastid SSR markers. The wide utility of these markers is demonstrated for haplotype identification and detection of polymorphism in B. napus, B. nigra, B. oleracea, B. rapa and in related genera Arabidopsis, Camelina, Raphanus and Sinapis. Eleven gene regions (ndhB-rps7 spacer, rbcL-accD spacer, rpl16 intron, rps16 intron, atpB-rbcL spacer, trnE-trnT spacer, trnL intron, trnL-trnF spacer, trnM-atpE spacer, trnR-rpoC2 spacer, ycf3-psaA spacer) were sequenced from a range of Brassica and related genera for SSR detection and primer design. Other sequences were obtained from GenBank/EMBL. Eight out of nine selected SSR loci showed polymorphism when amplified using the new primers and a combined analysis detected variation within and between Brassica species, with the number of alleles detected per locus ranging from 5 (loci MF-6, MF-1) to 11 (locus MF-7). The combined SSR data were used in a neighbour-joining analysis (SMM, D (DM) distances) to group the samples based on the presence and absence of alleles. The analysis was generally able to separate plastid types into taxon-specific groups. Multi-allelic haplotypes were plotted onto the neighbour joining tree. A total number of 28 haplotypes were detected and these differentiated 22 of the 41 accessions screened from all other accessions. None of these haplotypes was shared by more than one species and some were not characteristic of their predicted type. We interpret our results with respect to taxon differentiation, hybridisation and introgression patterns relating to the 'Triangle of U'.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Whole-grain foods are touted for multiple health benefits, including enhancing insulin sensitivity and reducing type 2 diabetes risk. Recent genome-wide association studies (GWAS) have identified several single nucleotide polymorphisms (SNPs) associated with fasting glucose and insulin concentrations in individuals free of diabetes. We tested the hypothesis that whole-grain food intake and genetic variation interact to influence concentrations of fasting glucose and insulin. Via meta-analysis of data from 14 cohorts comprising ∼ 48,000 participants of European descent, we studied interactions of whole-grain intake with loci previously associated in GWAS with fasting glucose (16 loci) and/or insulin (2 loci) concentrations. For tests of interaction, we considered a P value <0.0028 (0.05 of 18 tests) as statistically significant. Greater whole-grain food intake was associated with lower fasting glucose and insulin concentrations independent of demographics, other dietary and lifestyle factors, and BMI (β [95% CI] per 1-serving-greater whole-grain intake: -0.009 mmol/l glucose [-0.013 to -0.005], P < 0.0001 and -0.011 pmol/l [ln] insulin [-0.015 to -0.007], P = 0.0003). No interactions met our multiple testing-adjusted statistical significance threshold. The strongest SNP interaction with whole-grain intake was rs780094 (GCKR) for fasting insulin (P = 0.006), where greater whole-grain intake was associated with a smaller reduction in fasting insulin concentrations in those with the insulin-raising allele. Our results support the favorable association of whole-grain intake with fasting glucose and insulin and suggest a potential interaction between variation in GCKR and whole-grain intake in influencing fasting insulin concentrations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Growing evidence suggests that a novel member of the Chlamydiales order, Waddlia chondrophila, is a potential agent of miscarriage in humans and abortion in ruminants. Due to the lack of genetic tools to manipulate chlamydia, genomic analysis is proving to be the most incisive tool in stimulating investigations into the biology of these obligate intracellular bacteria. 454/Roche and Solexa/Illumina technologies were thus used to sequence and assemble de novo the full genome of the first representative of the Waddliaceae family, W. chondrophila. The bacteria possesses a 2'116'312 bp chromosome and a 15'593 bp low-copy number plasmid that might integrate into the bacterial chromosome. The Waddlia genome displays numerous repeated sequences indicating different genome dynamics from classical chlamydia which almost completely lack repetitive elements. Moreover, W. chondrophila exhibits many virulence factors also present in classical chlamydia, including a functional type III secretion system, but also a large complement of specific factors for resistance to host or environmental stresses. Large families of outer membrane proteins were identified indicating that these highly immunogenic proteins are not Chlamydiaceae specific and might have been present in their last common ancestor. Enhanced metabolic capability for the synthesis of nucleotides, amino acids, lipids and other co-factors suggests that the common ancestor of the modern Chlamydiales may have been less dependent on their eukaryotic host. The fine-detailed analysis of biosynthetic pathways brings us closer to possibly developing a synthetic medium to grow W. chondrophila, a critical step in the development of genetic tools. As a whole, the availability of the W. chondrophila genome opens new possibilities in Chlamydiales research, providing new insights into the evolution of members of the order Chlamydiales and the biology of the Waddliaceae.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Genomic clones containing the Xenopus laevis vitellogenin gene B1 have been isolated from DNA libraries and characterized by heteroduplex mapping in the electron microscope, restriction endonuclease analysis, and in vitro transcription in a HeLa whole-cell extract. Sequences from the 3'-flanking region of the previously isolated A1 vitellogenin gene were found in the 5'-flanking region of this B1 gene. Thus, the two genes are linked, with 15.5 kilobase pairs of DNA between them. Their length is about 22 kilobase pairs (A1 gene) and 16.5 kilobase pairs (B1 gene) and they have the following arrangement: 5'-A1 gene-spacer-B1 gene-3'. The analysis of heteroduplexes formed between the two genes revealed several regions of homology. Both genes are in the same orientation and, therefore, are transcribed from the same DNA strand. The possible events by which the vitellogenin gene family arose in Xenopus laevis are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Within the ENCODE Consortium, GENCODE aimed to accurately annotate all protein-coding genes, pseudogenes, and noncoding transcribed loci in the human genome through manual curation and computational methods. Annotated transcript structures were assessed, and less well-supported loci were systematically, experimentally validated. Predicted exon-exon junctions were evaluated by RT-PCR amplification followed by highly multiplexed sequencing readout, a method we called RT-PCR-seq. Seventy-nine percent of all assessed junctions are confirmed by this evaluation procedure, demonstrating the high quality of the GENCODE gene set. RT-PCR-seq was also efficient to screen gene models predicted using the Human Body Map (HBM) RNA-seq data. We validated 73% of these predictions, thus confirming 1168 novel genes, mostly noncoding, which will further complement the GENCODE annotation. Our novel experimental validation pipeline is extremely sensitive, far more than unbiased transcriptome profiling through RNA sequencing, which is becoming the norm. For example, exon-exon junctions unique to GENCODE annotated transcripts are five times more likely to be corroborated with our targeted approach than with extensive large human transcriptome profiling. Data sets such as the HBM and ENCODE RNA-seq data fail sampling of low-expressed transcripts. Our RT-PCR-seq targeted approach also has the advantage of identifying novel exons of known genes, as we discovered unannotated exons in ~11% of assessed introns. We thus estimate that at least 18% of known loci have yet-unannotated exons. Our work demonstrates that the cataloging of all of the genic elements encoded in the human genome will necessitate a coordinated effort between unbiased and targeted approaches, like RNA-seq and RT-PCR-seq.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction: Approximately one fifth of stage I and II colon cancer patients will suffer from recurrent disease. This is partly due to the presence of small nodal tumour infiltrates, which are undetected by standard histopathology using Haematoxylin & Eosin (H&E) staining on one slice and thus may not receive beneficial adjuvant therapy. A new diagnostic, semi-automatic system, called one-step nucleic acid amplification (OSNA), was recently designed for the detection of cytokeratin 19 (CK19) mRNA as a surrogate for lymph node metastases. The objective of the present investigation was to compare the performance of OSNA with both standard H&E as well as intensive histopathologic analyses in the detection of colon cancer lymph node micro- and macro-metastases.Methods: In this prospective study 313 lymph nodes from 22 consecutive stage I - III colon cancer patients were assessed. Half of each lymph node was analysed initially based on one slice of H&E followed by an intensive histologic work-up (5 levels of H&E and immuno-histochemistry staining for each slice), the other half was analysed using OSNA.Results: All OSNA results were available after less than 40 minutes. Fifty-one lymph nodes were positive and 246 lymph nodes negative with both OSNA and standard H&E. OSNA was more sensitive to detect small nodal tumor infiltrates compared to H&E (11 OSNA pos. /H&E neg.). Compared to intensive histopathologic analyses, OSNA had a sensitivity of 94.5% and a specificity of 97.6% to detect lymph node micro- and macro-metastases with a concordance rate of 97.1%. An upstaging due to OSNA was found in 2/13 (15.3%) initially node negative colon cancer patients.Conclusion: OSNA appears to be a powerful and promising molecular tool for the detection of lymph node macro- and micro-metastases in colon cancer patients. OSNA has a similar performance in the detection of micro- and macro-metastases compared to intensive histopathologic investigations and appears to be superior to standard histology with H&E. Since the use of OSNA allows the analysis of the whole lymph node, the problem of sampling bias and undetected tumor deposits due to uninvestigated material will be overcome in the future and OSNA may thus improve staging in colon cancer patients. It is hoped that this improved staging will lead to better patient selection for adjuvant therapy and consecutively improved local and distant control as well as better overall survival.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Plants have the ability to use the composition of incident light as a cue to adapt development and growth to their environment. Arabidopsis thaliana as well as many crops are best adapted to sunny habitats. When subjected to shade, these plants exhibit a variety of physiological responses collectively called shade avoidance syndrome (SAS). It includes increased growth of hypocotyl and petioles, decreased growth rate of cotyledons and reduced branching and crop yield. These responses are mainly mediated by phytochrome photoreceptors, which exist either in an active, far-red light (FR) absorbing or an inactive, red light (R) absorbing isoform. In direct sunlight, the R to FR light (R/FR) ratio is high and converts the phytochromes into their physiologically active state. The phytochromes interact with downstream transcription factors such as PHYTOCHROME INTERACTING FACTOR (PIF), which are subsequently degraded. Light filtered through a canopy is strongly depleted in R, which result in a low R/FR ratio and renders the phytochromes inactive. Protein levels of downstream transcription factors are stabilized, which initiates the expression of shade-induced genes such as HFR1, PIL1 or ATHB-2. In my thesis, I investigated transcriptional responses mediated by the SAS in whole Arabidopsis seedlings. Using microarray and chromatin immunoprecipitation data, we identified genome-wide PIF4 and PIF5 dependent shade regulated gene as well as putative direct target genes of PIF5. This revealed evidence for a direct regulatory link between phytochrome signaling and the growth promoting phytohormone auxin (IAA) at the level of biosynthesis, transport and signaling. Subsequently, it was shown, that free-IAA levels are upregulated in response to shade. It is assumed that shade-induced auxin production takes predominantly place in cotyledons of seedlings. This implies, that IAA is subsequently transported basipetally to the hypocotyl and enhances elongation growth. The importance of auxin transport for growth responses has been established by chemical and genetic approaches. To gain a better understanding of spatio-temporal transcriptional regulation of shade-induce auxin, I generated in a second project, an organ specific high throughput data focusing on cotyledon and hypocotyl of young Arabidopsis seedlings. Interestingly, both organs show an opposite growth regulation by shade. I first investigated the spatio-transcriptional regulation of auxin re- sponsive gene, in order to determine how broad gene expression pattern can be explained by the hypothesized movement of auxin from cotyledons to hypocotyls in shade. The analysis suggests, that several genes are indeed regulated according to our prediction and others are regulated in a more complex manner. In addition, analysis of gene families of auxin biosynthetic and transport components, lead to the identification of essential family members for shade-induced growth re- sponses, which were subsequently experimentally confirmed. Finally, the analysis of expression pattern identified several candidate genes, which possibly explain aspects of the opposite growth response of the different organs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reverse transcriptase (RT) sequence analysis is an important technique used to detect the presence of transposable elements in a genome. Putative RT sequences were analyzed in the genome of the pathogenic fungus C. perniciosa, the causal agent of witches' broom disease of cocoa. A 394 bp fragment was amplified from genomic DNA of different isolates of C. perniciosa belonging to C-, L-, and S-biotypes and collected from various geographical areas. The cleavage of PCR products with restriction enzymes and the sequencing of various RT fragments indicated the presence of several sequences showing transition events (G:C to A:T). Southern blot analysis revealed high copy numbers of RT signals, forming different patterns among C-, S-, and L-biotype isolates. Sequence comparisons of the predicted RT peptide indicate a close relationship with the RT protein from thegypsy family of LTR-retrotransposons. The possible role of these retrotransposons in generating genetic variability in the homothallic C. perniciosa is discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Our understanding of the pathogenesis of organ‐specific autoinflammation has been restricted by limited access to the target organs. Peripheral blood, however, as a preferred transportation route for immune cells, provides a window to assess the entire immune system throughout the body. Transcriptional profiling with RNA stabilizing blood collection tubes reflects in vivo expression profiles at the time the blood is drawn, allowing detection of the disease activity in different samples or within the same sample over time. The main objective of this Ph.D. study was to apply gene‐expression microarrays in the characterization of peripheral blood transcriptional profiles in patients with autoimmune diseases. To achieve this goal a custom cDNA microarray targeted for gene‐expression profiling of human immune system was designed and produced. Sample collection and preparation was then optimized to allow gene‐expression profiling from whole‐blood samples. To overcome challenges resulting from minute amounts of sample material, RNA amplification was successfully applied to study pregnancy related immunosuppression in patients with multiple sclerosis (MS). Furthermore, similar sample preparation was applied to characterize longitudinal genome‐wide expression profiles in children with type 1 diabetes (T1D) associated autoantibodies and eventually clinical T1D. Blood transcriptome analyses, using both the ImmunoChip cDNA microarray with targeted probe selection and genome‐wide Affymetrix U133 Plus 2.0 oligonucleotide array, enabled monitoring of autoimmune activity. Novel disease related genes and general autoimmune signatures were identified. Notably, down‐regulation of the HLA class Ib molecules in peripheral blood was associated with disease activity in both MS and T1D. Taken together, these studies demonstrate the potential of peripheral blood transcriptional profiling in biomedical research and diagnostics. Imbalances in peripheral blood transcriptional activity may reveal dynamic changes that are relevant for the disease but might be completely missed in conventional cross‐sectional studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pneumocystis has been isolated from a wide range of unrelated mammalian hosts, including humans, domestic and wild animals. It has been demonstrated that the genome of Pneumocystis of one host differs markedly from that of other hosts. Also, variation in the chromosome and DNA sequence of Pneumocystis within a single host species has been observed. Since information about the occurrence and nature of infections in wild animals is still limited, the objective of this work was to detect the presence of Pneumocystis sp. in lungs of bats from two states from Brazil by Nested-PCR amplification. The bats, captured in caves and in urban areas, were obtained from the Program of Rabies Control of two States in Brazil, Mato Grosso and Rio Grande do Sul, located in the Mid-Western and Southern regions of the country, respectively. DNAs were extracted from 102 lung tissues and screened for Pneumocystis by nested PCR at the mtLSU rRNA gene and small subunit of mitochondrial ribosomal RNA (mtSSU rRNA). Gene amplification was performed using the mtLSU rRNA, the primer set pAZ102H - pAZ102E and pAZ102X - pAZY, and the mtSSU rRNA primer set pAZ102 10FRI - pAZ102 10R-RI and pAZ102 13RI - pAZ102 14RI. The most frequent bats were Tadarida brasiliensis (25), Desmodus rotundus (20), and Nyctinomops laticaudatus (19). Pneumocystis was more prevalent in the species Nyctinomops laticaudatus (26.3% = 5/19), Tadarida brasiliensis (24% = 6/25), and Desmodus rotundus (20% = 4/20). Besides these species, Pneumocystis also was detected in lungs from Molossus molossus (1/11, 9.1%), Artibeus fimbriatus (1/1, 100%), Sturnira lilium (1/3, 33.3%), Myotis levis (2/3, 66.7%)and Diphylla ecaudata (1/2, 50%). PCR products which could indicate the presence of Pneumocystis (21.56%) were identified in DNA samples obtained from 8 out of 16 classified species from both states (5 bats were not identified). This is the first report of detection of Pneumocystis in bats from Brazil.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Calves born persistently infected with non-cytopathic bovine viral diarrhea virus (ncpBVDV) frequently develop a fatal gastroenteric illness called mucosal disease. Both the original virus (ncpBVDV) and an antigenically identical but cytopathic virus (cpBVDV) can be isolated from animals affected by mucosal disease. Cytopathic BVDVs originate from their ncp counterparts by diverse genetic mechanisms, all leading to the expression of the non-structural polypeptide NS3 as a discrete protein. In contrast, ncpBVDVs express only the large precursor polypeptide, NS2-3, which contains the NS3 sequence within its carboxy-terminal half. We report here the investigation of the mechanism leading to NS3 expression in 41 cpBVDV isolates. An RT-PCR strategy was employed to detect RNA insertions within the NS2-3 gene and/or duplication of the NS3 gene, two common mechanisms of NS3 expression. RT-PCR amplification revealed insertions in the NS2-3 gene of three cp isolates, with the inserts being similar in size to that present in the cpBVDV NADL strain. Sequencing of one such insert revealed a 296-nucleotide sequence with a central core of 270 nucleotides coding for an amino acid sequence highly homologous (98%) to the NADL insert, a sequence corresponding to part of the cellular J-Domain gene. One cpBVDV isolate contained a duplication of the NS3 gene downstream from the original locus. In contrast, no detectable NS2-3 insertions or NS3 gene duplications were observed in the genome of 37 cp isolates. These results demonstrate that processing of NS2-3 without bulk mRNA insertions or NS3 gene duplications seems to be a frequent mechanism leading to NS3 expression and BVDV cytopathology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Gastric cancer is the fourth most frequent type of cancer and the second cause of cancer mortality worldwide. The genetic alterations described so far for gastric carcinomas include amplifications and mutations of the c-ERBB2, KRAS, MET, TP53, and c-MYC genes. Chromosomal instability described for gastric cancer includes gains and losses of whole chromosomes or parts of them and these events might lead to oncogene overexpression, showing the need for a better understanding of the cytogenetic aspects of this neoplasia. Very few gastric carcinoma cell lines have been isolated. The establishment and characterization of the biological properties of gastric cancer cell lines is a powerful tool to gather information about the evolution of this malignancy, and also to test new therapeutic approaches. The present study characterized cytogenetically PG-100, the first commercially available gastric cancer cell line derived from a Brazilian patient who had a gastric adenocarcinoma, using GTG banding and fluorescent in situ hybridization to determine MYC amplification. Twenty metaphases were karyotyped; 19 (95%) of them presented chromosome 8 trisomy, where the MYC gene is located, and 17 (85%) presented a deletion in the 17p region, where the TP53 is located. These are common findings for gastric carcinomas, validating PG100 as an experimental model for this neoplasia. Eighty-six percent of 200 cells analyzed by fluorescent in situ hybridization presented MYC overexpression. Less frequent findings, such as 5p deletions and trisomy 16, open new perspectives for the study of this tumor.