995 resultados para Vulnerabilidade ao stress


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recycling plastic water bottles has become one of the major challenges world wide. The present study provides an approach for the use of plastic waste as reinforcement material in soil, which can be used for ground improvement, subbases, and subgrade preparation in road construction. The experimental results are presented in the form of stress-strain-pore water pressure response and compression paths. On the basis of experimental test results, it is observed that the strength of soil is improved and compressibility reduced significantly with the addition of a small percentage of plastic waste to the soil. In this paper, an analytical model is proposed to evaluate the response of plastic waste mixed soil. It is noted that the model captures the stress-strain and pore water pressure response of all percentages of plastic waste adequately. The paper also provides a comparative study of failure stress obtained from different published models and the proposed model, which are compared with experimental results. The improvement in strength attributable to the inclusion of plastic waste can be advantageously used in ground improvement projects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abrin from Abrus precatorius plant is a potent protein synthesis inhibitor and induces apoptosis in cells. However, the relationship between inhibition of protein synthesis and apoptosis is not well understood. Inhibition of protein synthesis by abrin can lead to accumulation of unfolded protein in the endoplasmic reticulum causing ER stress. The observation of phosphorylation of eukaryotic initiation factor 2 alpha and upregulation of CHOP (CAAT/enhancer binding protein (C/EBP) homologous protein), important players involved in ER stress signaling by abrin, suggested activation of ER stress in the cells. ER stress is also known to induce apoptosis via stress kinases such as p38 MAPK and JNK. Activation of both the pathways was observed upon abrin treatment and found to be upstream of the activation of caspases. Moreover, abrin-induced apoptosis was found to be dependent on p38 MAPK but not JNK. We also observed that abrin induced the activation of caspase-2 and caspase-8 and triggered Bid cleavage leading to mitochondrial membrane potential loss and thus connecting the signaling events from ER stress to mitochondrial death machinery.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Effects of fluctuations in habitat temperature (18-30 degrees) on mitochondrial respiratory behavior and oxidative metabolic responses in the euryhaline ectotherm Scylla serrate are not fully understood. In the present study, effects of different temperatures ranging from 12 to 40 degrees C on glutamate and succinate mediated mitochondrial respiration, respiratory control ratio (RCR), ATP generation rate, ratio for the utilization of phosphate molecules per atomic oxygen consumption (P/O), levels of lipid peroxidation and H2O2 in isolated gill mitochondria of S. serrata are reported. The pattern of variation in the studied parameters was similar for the two substrates at different temperatures. The values recorded for RCR ( >= 3) and P/O ratio (1.4-2.7) at the temperature range of 15-25 degrees C were within the normal range reported for other animals (3-10 for RCR and 1.5-3 for P/O). Values for P/O ratio, ATP generation rate and RCR were highest at 18 degrees C when compared to the other assay temperatures. However, at low and high extreme temperatures, i.e. at 12 and 40 degrees C, states III and IV respiration rates were not clearly distinguishable from each other indicating that mitochondria were completely uncoupled. Positive correlations were noticed between temperature and the levels of both lipid peroxidation and H2O2. It is inferred that fluctuations on either side of ambient habitat temperature may adversely influence mitochondria respiration and oxidative metabolism in S. serrata. The results provide baseline data to understand the impacts of acute changes in temperature on ectotherms inhabiting estuarine or marine environments. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multi-site damage need to be addressed and evaluated in order to assess the integrity of aging aircraft structures. One of the problems recognized in the recent times is the effect of interaction between two or more cracks in the close neighborhood in such structures. The present paper deals with such a problem and presents numerical estimates of stress intensity factors at a crack tip in an un-stiffened curved panel with a secondary crack in the vicinity of a primary crack. The results are presented in the form of design charts. These results should be useful in evaluation in the damage tolerance evaluation of aircraft structures with multi-site damage. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: In this study, we report the role of miRNAs involved under nitrogen starvation from widely grown vegetable crop, French bean. In recent years, a great deal of attention has been paid to the elucidation of miRNAs involved in low nitrate stress. Methods: To identify miRNAs expressed under stress, cDNA libraries were analyzed. Results: We reported the nine potential miRNAs with 67 targets involved in nutrient transporters and other stress specific genes. Among the miRNA sequences obtained 6 sequences belong to miR172 family, one with miR169. RT-PCR analysis of expression of miR172 family was induced upon low nitrate stress while miR169 family was repressed. In addition, Pvu-SN7b and Pvu-miR16 may be new members of miRNA172 and miR169 families, respectively. Conclusion: The targets of Pvu-SN7b were major protein kinases, one among which is the Protein Kinase CK2. CK2 Kinase is found to involve in transcription-directed signaling, gene control and cell-cycle regulation. Other targets of Pvu-SN7b were involved in DNA-dependent transcription regulation, photo-periodism, calcium-mediated signaling. Pvu-miR16 targets Thymidine kinase, the key enzyme of deoxy-nucleotide synthesis. The cleavage of these targets affects cell proliferation there by affecting nodule formation. Pvu-miR8 inhibits translation of its target protein Pre-protein translocase, a membrane-bound protein transporter involved in trans-membrane protein transportation. Together these results denote the response and role of miRNAs to nitrate-limiting conditions in French bean.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The malaria parasite experiences a significant amount of redox stress during its growth in human erythrocytes and heavily relies on secretory functions for pathogenesis. Most certainly, the parasite is equipped with machinery to tackle perturbations in the secretory pathway, like the unfolded protein response pathway in higher eukaryotes. Our bioinformatics analysis revealed the complete absence of genes involved in the canonical unfolded protein response pathway in Plasmodium falciparum. Accordingly, the parasite was unable to up-regulate endoplasmic reticulum (ER) chaperones or ER-associated degradation in response to DTT-mediated ER stress. Global profiling of gene expression upon DTT treatment revealed a network of AP2 transcription factors and their targets being activated. The overall outcome was up-regulation of genes involved in protein export and the sexual stage of the parasite life cycle culminating in gametocytogenesis. Our results suggest that the malaria parasite uses ER stress as a cue to switch to the transmissible sexual stages.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We calculate one, two and three point functions of the holographic stress tensor for any bulk Lagrangian of the form L (g(ab), R-abcd, del(e) R-abcd). Using the first law of entanglement, a simple method has recently been proposed to compute the holographic stress tensor arising from a higher derivative gravity dual. The stress tensor is proportional to a dimension dependent factor which depends on the higher derivative couplings. In this paper, we identify this proportionality constant with a B-type trace anomaly in even dimensions for any bulk Lagrangian of the above form. This in turn relates to C-T, the coefficient appearing in the two point function of stress tensors. We use a background field method to compute the two and three point function of stress tensors for any bulk Lagrangian of the above form in arbitrary dimensions. As an application we consider general situations where eta/s for holographic plasmas is less than the KSS bound.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Redox imbalance generates multiple cellular damages leading to oxidative stress-mediated pathological conditions such as neurodegenerative diseases and cancer progression. Therefore, maintenance of reactive oxygen species (ROS) homeostasis is most important that involves well-defined antioxidant machinery. In the present study, we have identified for the first time a component of mammalian protein translocation machinery Magmas to perform a critical ROS regulatory function. Magmas overexpression has been reported in highly metabolically active tissues and cancer cells that are prone to oxidative damage. We found that Magmas regulates cellular ROS levels by controlling its production as well as scavenging. Magmas promotes cellular tolerance toward oxidative stress by enhancing antioxidant enzyme activity, thus preventing induction of apoptosis and damage to cellular components. Magmas enhances the activity of electron transport chain (ETC) complexes, causing reduced ROS production. Our results suggest that J-like domain of Magmas is essential for maintenance of redox balance. The function of Magmas as a ROS sensor was found to be independent of its role in protein import. The unique ROS modulatory role of Magmas is highlighted by its ability to increase cell tolerance to oxidative stress even in yeast model organism. The cytoprotective capability of Magmas against oxidative damage makes it an important candidate for future investigation in therapeutics of oxidative stress-related diseases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Solder joints in electronic packages undergo thermo-mechanical cycling, resulting in nucleation of micro-cracks, especially at the solder/bond-pad interface, which may lead to fracture of the joints. The fracture toughness of a solder joint depends on material properties, process conditions and service history, as well as strain rate and mode-mixity. This paper reports on a methodology for determining the mixed-mode fracture toughness of solder joints with an interfacial starter-crack, using a modified compact mixed mode (CMM) specimen containing an adhesive joint. Expressions for stress intensity factor (K) and strain energy release rate (G) are developed, using a combination of experiments and finite element (FE) analysis. In this methodology, crack length dependent geometry factors to convert for the modified CMM sample are first obtained via the crack-tip opening displacement (CTOD)-based linear extrapolation method to calculate the under far-field mode I and II conditions (f(1a) and f(2a)), (ii) generation of a master-plot to determine a(c), and (iii) computation of K and G to analyze the fracture behavior of joints. The developed methodology was verified using J-integral calculations, and was also used to calculate experimental fracture toughness values of a few lead-free solder-Cu joints. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experimental studies and atomistic simulations have shown that brittle metallic glasses fail by a cavitation mechanism whose origin has been traced to the presence of intrinsic atomic density fluctuations which give rise to weak zones with reduced yield strength. It has been shown recently through continuum analysis that the presence of these zones can lower the cavitation stress considerably under equibiaxial loading. The objective of the present work is to study the effect of the applied stress state on the cavitation behavior of such a heterogeneous plastic solid with distributed weak zones. To this end, 2D plane strain finite element simulations are performed by subjecting a unit cell containing a weak zone to different (biaxiality) stress ratios. The volume fraction and yield strength of the weak zone are varied over a wide range. The results show that unlike in a homogeneous plastic solid, the cavitation stress of the heterogeneous aggregate does not reduce appreciably as the stress ratio decreases from unity when the yield strength of the weak zone is low. It is found that a non-dimensional parameter characterizing the stress state prevailing in the weak zone and its yield properties uniquely control the cavitation stress. The nature of cavitation bifurcation may change from unstable bifurcation to the left at sufficiently low stress ratio to one involving snap cavitation at high stress ratio. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using a thermodynamically consistent non-local plasticity model, the mechanistic origin of enhancement in ductility and suppression of dominant shear banding in nanoglasses (NGs) is analysed. It is revealed that the interaction stress between flow defects plays a central role in promoting global plasticity of NGs. Specifically, we find that the intrinsic length associated with this stress provides a scaling for the shear band width and its coupling with grain size governs the level of enhancement in the deformation behaviour of NGs. The present work may provide useful insights in developing highly ductile NGs for practical engineering applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Contact damage in curved interface nano-layeredmetal/nitride (150 (ZrN)/10 (Zr) nm) multilayer is investigated in order to understand the role of interface morphology on contact damage under indentation. A finite element method (FEM) model was formulated with different wavelengths of 1000 nm, 500 nm, 250 nm and common height of 50 nm, which gives insight on the effect of different curvature on stress field generated under indentation. Elastic-plastic properties were assigned to the metal layer and substrate while the nitride layer was assigned perfectly elastic properties. Curved interface multilayers show delamination along the metal/nitride interface and vertical cracks emanating from the ends of the delamination. FEM revealed the presence of tensile stress normal to the interface even under the contact, along with tensile radial stresses, both present at the valley part of the curve, which leads to vertical cracks associated with interfacial delamination. Stress enhancement was seen to be relatively insensitive to curvature. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A 2D multi-particle model is carried out to understand the effect of microstructural variations and loading conditions on the stress evolution in Al-Si alloy under compression. A total of six parameters are varied to create 26 idealized microstructures: particle size, shape, orientation, matrix temper, strain rate, and temperature. The effect of these parameters is investigated to understand the fracture of Si particles and the yielding of Al matrix. The Si particles are modeled as a linear elastic solid and the Al matrix is modeled as an elasto-plastic solid. The results of the study demonstrate that the increase in particle size decreases the yield strength of the alloy. The particles with high aspect ratio and oriented at 0A degrees and 90A degrees to the loading axis show higher stress values. This implies that the particle shape and orientation are dominant factors in controlling particle fracture. The heat treatment of the alloy is found to increase the stress levels of both particles and matrix. Stress calculations also show that higher particle fracture and matrix yielding is expected at higher strain rate deformation. Particle fracture decreases with increase in temperature and the Al matrix plays an important role in controlling the properties of the alloy at higher temperatures. Further, this strain rate and temperature dependence is more pronounced in the heat-treated microstructure. These predictions are consistent with the experimentally observed Si particle fracture in real microstructure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nature of the stress and electric field driven structural and microstructural transformations in the morphotropic phase boundary (MPB) compositions of the high Curie point piezoelectric system BiScO3-PbTiO3 has been examined by ex situ based techniques. Using a powder poling technique, which is based on the concept of exploiting the irreversible structural change that occurs after the application of a strong electric field and stress independently, it was possible to ascertain that both moderate stress and electric field induce identical structural transformation-a fraction of the monoclinic phase transforms irreversibly to the tetragonal phase. Moreover, analysis of the dielectric response before and after poling revealed a counterintuitive phenomenon of poling induced decrease in the spatial coherence of polarization for compositions around the MPB and not so for compositions far away from the MPB range. Exploiting the greater sensitivity of this technique, we demonstrate that the criticality associated with the interferroelectric transition spans a wider composition range than what is conventionally reported in the literature based on bulk x-ray/neutron powder diffraction techniques.