984 resultados para Volatile flavour compounds
Resumo:
Pós-graduação em Engenharia e Ciência de Alimentos - IBILCE
Resumo:
Background: Similar to other hematophagous insects, male and female sand flies must feed on plants to obtain sugar and, subsequently, energy to complete their life cycles. A large number of compounds emitted by plants may act as volatile signals to these insects. Primary alcohols have been detected in some plants, but in small amounts. In a previous report, the attractiveness of saturated primary alcohols with 7 to 9 carbons was evaluated for Lutzomyia longipalpis, the vector of American visceral leishmaniasis, with positive results.Methods: In the present study, a wide range of primary alcohols, 3 to 10 carbons, were tested to investigate their attractiveness to another sand fly species, Nyssomyia neivai, a putative vector of American cutaneous leishmaniasis. The mixture of compounds that induced the best sand fly response was also evaluated.Results: Of the eight compounds evaluated, hexanol and octanol elicited the best attractive responses for sand fly females.Conclusion: Phytochemicals may be an interesting source of search for new sand fly attractants.
Resumo:
Antarctic plant communities are dominated by lichens and mosses which accumulate semivolatile organic compounds (SOCs) such as polybrominated diphenyl ethers (PBDEs) directly from the atmosphere. Differences in the levels of PBDEs observed in lichens and mosses collected at King George Island in the austral summers 2004-05 and 2005-06 are probably explained by environmental and/or plant parameters. Contamination of lichens showed a positive correlation with local precipitation, suggesting that wet deposition processes are a major mechanism controlling the uptake of most PBDE congeners. These findings are in agreement with physical-chemical data supporting that tetra- through hepta-BDEs in the Antarctic atmosphere are basically bound to aerosols. Conversely, accumulation of PBDEs in mosses appears to be controlled by other environmental factors and/or plant-specific characteristics. Model simulations demonstrated that an ocean-atmosphere coupling may have played a role in the long-range transport of less volatile SOCs such as PBDEs to Antarctica. According to simulations, the atmosphere is the most important transport medium for PBDEs while the surface ocean serves as a temporary storage compartment, boosting the deposition/volatilization ""hopping"" effect similarly to vegetation on continents. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Insect cuticular hydrocarbons including relatively non-volatile chemicals play important roles in cuticle protection and chemical communication. The conventional procedures for extracting cuticular compounds from insects require toxic solvents, or non-destructive techniques that do not allow storage of subsequent samples, such as the use of SPME fibers. In this study, we describe and tested a non-lethal process for extracting cuticular hydrocarbons with styrene-divinylbenzene copolymers, and illustrate the method with two species of bees and one species of beetle. The results demonstrate that these compounds can be efficiently trapped by ChromosorbA (R) (SUPELCO) and that this method can be used as an alternative to existing methods.
Resumo:
The phenolic composition of heartwood extracts from Fraxinus excelsior L. and F. americana L., both before and after toasting in cooperage, was studied using LC-DAD/ESI-MS/MS. Low-molecular weight (LMW) phenolic compounds, secoiridoids, phenylethanoid glycosides, dilignols and oligolignols compounds were detected, and 48 were identified, or tentatively characterized, on the basis of their retention time, UV/Vis and MS spectra, and MS fragmentation patterns. Some LMW phenolic compounds like protocatechuic acid and aldehyde, hydroxytyrosol and tyrosol, were unlike to those for oak wood, while ellagic and gallic acid were not found. The toasting of wood resulted in a progressive increase in lignin degradation products with regard to toasting intensity. The levels of some of these compounds in medium-toasted ash woods were much higher than those normally detected in toasted oak, highlighting vanillin levels, thus a more pronounced vanilla character can be expected when using toasted ash wood in the aging wines. Moreover, in seasoned wood, we found a great variety of phenolic compounds which had not been found in oak wood, especially oleuropein, ligstroside and olivil, along with verbascoside and isoverbascoside in F. excelsior, and oleoside in F. americana. Toasting mainly provoked their degradation, thus in medium-toasted wood, only four of them were detected. This resulted in a minor differentiation between toasted ash and oak woods. The absence of tannins in ash wood, which are very important in oak wood, is another peculiar characteristic that should be taken into account when considering its use in cooperage. Copyright (C) 2012 John Wiley & Sons, Ltd.
Resumo:
In this study we report the characterization of the volatile compounds of Laurencia dendroidea. Solvent extracts (dichloromethane and methanol), hydrodistillation extracts and headspace solid-phase microextraction samples were obtained and analyzed by GC-MS. Forty-six volatile components were identified in L. dendroidea, among them hydrocarbons, alcohols, phenols, aldehydes, ketones, acids, esters and terpenes.
Resumo:
[EN]This work presents experimental mixing properties, hEand vE, at several temperatures and the iso-baric vapor–liquid equilibria (iso-p VLE) at 101.32 kPa for four binaries containing pentane and four alkyl(methyl to butyl) methanoates. Particular conditions are established to work with these solutions withhighly volatile compounds, especially for the case of methyl methanoate + pentane system, for whicha continuous feeding device is designed and constructed for measuring the densities.
Resumo:
Phenolic compounds play a central role in peach fruit colour, flavour and health attributes. Phenolic profiles of several peaches and nectarines and most of the structural genes leading to the anthocyanin synthesis in peach fruit have been studied. Moreover, crosses of red and non-red peaches suggested that a major gene controls skin colour of the extreme phenotypes ‘highlighter’ and ‘full-red’. However, there is no data about either the ‘flavan-3-ols specific genes’ (ANR and LAR) or the regulation of the flavonoid metabolism in this crop. In the present study, we determined the concentration of phenolic compounds in the yellowfleshed nectarine Prunus persica cv. ‘Stark Red Gold’ during fruit growth and ripening. We examined the transcript levels of the main structural genes of the flavonoid pathway. Gene expression of the biosynthetic genes correlated well with the concentration of flavan-3-ols, which was very low at the beginning of fruit development, strongly increased at mid-development and finally decreased again during ripening. In contrast, the only gene transcript which correlated with anthocyanin concentration was PpUFGT, which was high at the beginning and end of fruit growth, remaining low during the other developmental stages. These patterns of gene expression could be explained by the involvement of different transcription factors, which up-regulate anthocyanin biosynthesis (PpMYB10 and PpbHLH3), or repress (PpMYBL2) the transcription of the structural genes. These transcription factors appeared to be involved also in the regulation of the lightinduced anthocyanin accumulation in ‘Stark Red Gold’ nectarines, suggesting that they play a critical role in the regulation of flavonoid biosynthesis in peaches and nectarines in response to both developmental and environmental stimuli. Phenolic profiles and expression patterns of the main flavonoid structural and regulatory genes were also determined for the extreme phenotypes denominated ‘highlighter’ and ‘full-red’ and hypotheses about the control of phenolic compounds content in these fruit are discussed.
Resumo:
Food technologies today mean reducing agricultural food waste, improvement of food security, enhancement of food sensory properties, enlargement of food market and food economies. Food technologists must be high-skilled technicians with good scientific knowledge of food hygiene, food chemistry, industrial technologies and food engineering, sensory evaluation experience and analytical chemistry. Their role is to apply the modern vision of science in the field of human nutrition, rising up knowledge in food science. The present PhD project starts with the aim of studying and improving frozen fruits quality. Freezing process in very powerful in preserve initial raw material characteristics, but pre-treatment before the freezing process are necessary to improve quality, in particular to improve texture and enzymatic activity of frozen foods. Osmotic Dehydration (OD) and Vacuum Impregnation (VI), are useful techniques to modify fruits and vegetables composition and prepare them to freezing process. These techniques permit to introduce cryo-protective agent into the food matrices, without significant changes of the original structure, but cause a slight leaching of important intrinsic compounds. Phenolic and polyphenolic compounds for example in apples and nectarines treated with hypertonic solutions are slightly decreased, but the effect of concentration due to water removal driven out from the osmotic gradient, cause a final content of phenolic compounds similar to that of the raw material. In many experiment, a very important change in fruit composition regard the aroma profile. This occur in strawberries osmo-dehydrated under vacuum condition or under atmospheric pressure condition. The increment of some volatiles, probably due to fermentative metabolism induced by the osmotic stress of hypertonic treatment, induce a sensory profile modification of frozen fruits, that in some way result in a better acceptability of consumer, that prefer treated frozen fruits to untreated frozen fruits. Among different processes used, a very interesting result was obtained with the application of a osmotic pre-treatment driven out at refrigerated temperature for long time. The final quality of frozen strawberries was very high and a peculiar increment of phenolic profile was detected. This interesting phenomenon was probably due to induction of phenolic biological synthesis (for example as reaction to osmotic stress), or to hydrolysis of polymeric phenolic compounds. Aside this investigation in the cryo-stabilization and dehydrofreezing of fruits, deeper investigation in VI techniques were carried out, as studies of changes in vacuum impregnated prickly pear texture, and in use of VI and ultrasound (US) in aroma enrichment of fruit pieces. Moreover, to develop sensory evaluation tools and analytical chemistry determination (of volatiles and phenolic compounds), some researches were bring off and published in these fields. Specifically dealing with off-flavour development during storage of boiled potato, and capillary zonal electrophoresis (CZE) and high performance liquid chromatography (HPLC) determination of phenolic compounds.
Resumo:
Foods that provide medical and health benefits or have a role in disease risk prevention are termed functional foods. The functionality of functional foods is derived from bioactive compounds that are extranutritional constituents present in small quantities in food. Bioactive components include a range of chemical compounds with varying structures such as carotenoids, flavonoids, plant sterols, omega-3 fatty acids (n-3), allyl and diallyl sulfides, indoles (benzopyrroles), and phenolic acids. The increasing consumer interest in natural bioactive compounds has brought about a rise in demand for these kinds of compounds and, in parallel, an increasing number of scientific studies have this type of substance as main topic. The principal aim of this PhD research project was the study of different bioactive and toxic compounds in several natural matrices. To achieve this goal, chromatographic, spectroscopic and sensorial analysis were performed. This manuscript reports the main results obtained in the six activities briefly summarized as follows: • SECTION I: the influence of conventional packaging on lipid oxidation of pasta was evaluated in egg spaghetti. • SECTION II: the effect of the storage at different temperatures of virgin olive oil was monitored by peroxide value, fatty acid activity, OSI test and sensory analysis. • SECTION III: the glucosinolate and phenolic content of 37 rocket salad accessions were evaluated, comparing Eruca sativa and Diplotaxis tenuifolia species. Sensory analysis and the influence of the phenolic and glucosinolate composition on sensory attributes of rocket salads has been also studied. • SECTION IV: ten buckwheat honeys were characterised on the basis of their pollen, physicochemical, phenolic and volatile composition. • SECTION V: the polyphenolic fraction, anthocyanins and other polar compounds, the antioxidant capacity and the anty-hyperlipemic action of the aqueous extract of Hibiscus sabdariffa were achieved. • SECTION VI: the optimization of a normal phase high pressure liquid chromatography–fluorescence detection method for the quantitation of flavanols and procyanidins in cocoa powder and chocolate samples was performed.
Resumo:
The objectives of this PhD research were: i) to evaluate the use of bread making process to increase the content of β-glucans, resistant starch, fructans, dietary fibers and phenolic compounds of kamut khorasan and wheat breads made with flours obtained from kernels at different maturation stage (at milky stage and fully ripe) and ii) to study the impact of whole grains consumption in the human gut. The fermentation and the stages of kernel development or maturation had a great impact on the amount of resistant starch, fructans and β-glucans as well as their interactions resulted highly statistically significant. The amount of fructans was high in kamut bread (2.1g/100g) at the fully ripe stage compared to wheat during industrial fermentation (baker’s yeast). The sourdough increases the content of polyphenols more than industrial fermentation especially in bread made by flour at milky stage. From the analysis of volatile compounds it resulted that the sensors of electronic nose perceived more aromatic compound in kamut products, as well as the SPME-GC-MS, thus we can assume that kamut is more aromatic than wheat, so using it in sourdough process can be a successful approach to improve the bread taste and flavor. The determination of whole grain biormakers such as alkylresorcinols and others using FIE-MS AND GC-tof-MS is a valuable alternative for further metabolic investigations. The decrease of N-acetyl-glucosamine and 3-methyl-hexanedioic acid in kamut faecal samples suggests that kamut can have a role in modulating mucus production/degradation or even gut inflammation. This work gives a new approach to the innovation strategies in bakery functional foods, that can help to choose the right or best combination between stages of kernel maturation-fermentation process and baking temperature.
Resumo:
Phenomena related to the volatilization of polonium and its compounds are critical issues for the safety assessment of the innovative lead–bismuth cooled type of nuclear reactor or accelerator driven systems. The formation and volatilization of different species of polonium and their interaction with fused silica was studied by thermochromatography using carrier gases with varied redox potential. The obtained results show that under inert and reducing conditions in the absence of moisture, elemental polonium is formed. Polonium compounds more volatile than elemental polonium can be formed if traces of moisture are present in both inert and reducing carrier gas. The use of dried oxygen as carrier gas leads to the formation of polonium oxides, which are less volatile than elemental polonium. It was also found that the volatility of polonium oxides increases with increasing oxidation state. In the presence of moisture in an oxidizing carrier gas, species are formed that are more volatile than the oxides and less volatile than the elemental polonium. Considering the redox potential of the carrier gas those species are likely oxyhydroxides.
Resumo:
Transport of volatile hydrocarbons in soils is largely controlled by interactions of vapours with the liquid and solid phase. Sorption on solids of gaseous or dissolved comPounds may be important. Since the contact time between a chemical and a specific sorption site can be rather short, kinetic or mass-transfer resistance effects may be relevant. An existing mathematical model describing advection and diffusion in the gas phase and diffusional transport from the gaseous phase into an intra-aggregate water phase is modified to include linear kinetic sorption on ps-solid and water-solid interfaces. The model accounts for kinetic mass transfer between all three phases in a soil. The solution of the Laplace-transformed equations is inverted numerically. We performed transient column experiments with 1,1,2-Trichloroethane, Trichloroethylene, and Tetrachloroethylene using air-dry solid and water-saturated porous glass beads. The breakthrough curves were calculated based on independently estimated parameters. The model calculations agree well with experimental data. The different transport behaviour of the three compounds in our system primarily depends on Henry's constants.
Resumo:
Chemical plant strengtheners find increasing use in agriculture to enhance resistance against pathogens. In an earlier study, it was found that treatment with one such resistance elicitor, BTH (benzo-(1, 2, 3)-thiadiazole-7-carbothioic acid S-methyl ester), increases the attractiveness of maize plants to a parasitic wasp. This surprising additional benefit of treating plants with BTH prompted us to conduct a series of olfactometer tests to find out if BTH and another commercially available plant strengthener, Laminarin, increase the attractiveness of maize to three important parasitic wasps, Cotesia marginventris, Campoletis sonorensis, and Microplitis rufiventris. In each case, plants that were sprayed with the plant strengtheners and subsequently induced to release volatiles by real or mimicked attack by Spodoptera littoralis caterpillars became more attractive to the parasitoids than water treated plants. The elicitors alone or in combination with plants that were not induced by herbivory were not attractive to the wasps. Interestingly, plants treated with the plant strengtheners did not show any consistent increase in volatile emissions. On the contrary, treated plants released less herbivore-induced volatiles, most notably indole, which has been reported to interfere with parasitoid attraction. The emission of the sesquiterpenes (E)-β-caryophyllene, β-bergamotene, and (E)-β-farnesene was similarly reduced by the treatment. Expression profiles of marker genes showed that BTH and Laminarin induced several pathogenesis related (PR) genes. The results support the notion that, as yet undetectable and unidentified compounds, are of major importance for parasitoid attraction, and that these attractants may be masked by some of the major compounds in the volatile blends. This study confirms that elicitors of pathogen resistance are compatible with the biological control of insect pests and may even help to improve it.
Resumo:
Indoor and ambient air organic pollutants have been gaining attention because they have been measured at levels with possible health effects. Studies have shown that most airborne polychlorinated biphenyls (PCBs), pesticides and many polycyclic aromatic hydrocarbons (PAHs) are present in the free vapor state. The purpose of this research was to extend recent investigative work with polyurethane foam (PUF) as a collection medium for semivolatile compounds. Open-porous flexible PUFs with different chemical makeup and physical properties were evaluated as to their collection affinities/efficiencies for various classes of compounds and the degree of sample recovery. Filtered air samples were pulled through plugs of PUF spiked with various semivolatiles under different simulated environmental conditions (temperature and humidity), and sampling parameters (flow rate and sample volume) in order to measure their effects on sample breakthrough volume (V(,B)). PUF was also evaluated in the passive mode using organo-phosphorus pesticides. Another major goal was to improve the overall analytical methodology; PUF is inexpensive, easy to handle in the field and has excellent airflow characteristics (low pressure drop). It was confirmed that the PUF collection apparatus behaves as if it were a gas-solid chromatographic system, in that, (V(,B)) was related to temperature and sample volume. Breakthrough volumes were essentially the same using both polyether and polyester type PUF. Also, little change was observed in the V(,B)s after coating PUF with common chromatographic liquid phases. Open cell (reticulated) foams gave better recoveries than closed cell foams. There was a slight increase in (V(,B)) with an increase in the number of cells/pores per inch. The high-density polyester PUF was found to be an excellent passive and active collection adsorbent. Good recoveries could be obtained using just solvent elution. A gas chromatograph equipped with a photoionization detector gave excellent sensitivities and selectivities for the various classes of compounds investigated. ^