939 resultados para Vitreal alterations
Resumo:
"Published by request."
Resumo:
On cover: Anthon's Ainsworth.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Pencil on tracing paper; proposed road, tennis court, arbor, seats, native plantings, buildings; unsigned; 91 x 34 cm. [from photographic copy by Lance Burgharrdt]
Resumo:
Shaw & Shoemaker,
Resumo:
Drugs and metabolites are eliminated from the body by metabolism and excretion. The kidney makes the major contribution to excretion of unchanged drug and also to excretion of metabolites. Net renal excretion is a combination of three processes - glomerular filtration, tubular secretion and tubular reabsorption. Renal function has traditionally been determined by measuring plasma creatinine and estimating creatinine clearance. However, estimated creatinine clearance measures only glomerular filtration with a small contribution from active secretion. There is accumulating evidence of poor correlation between estimated creatinine clearance and renal drug clearance in different clinical settings, challenging the 'intact nephron hypothesis' and suggesting that renal drug handling pathways may not decline in parallel. Furthermore, it is evident that renal drug handling is altered to a clinically significant extent in a number of disease states, necessitating dosage adjustment not just based on filtration. These observations suggest that a re-evaluation of markers of renal function is required. Methods that measure all renal handling pathways would allow informed dosage individualisation using an understanding of renal excretion pathways and patient characteristics. Methodologies have been described to determine individually each of the renal elimination pathways. However, their simultaneous assessment has only recently been investigated. A cocktail of markers to measure simultaneously the individual renal handling pathways have now been developed, and evaluated in healthy volunteers. This review outlines the different renal elimination pathways and the possible markers that can be used for their measurement. Diseases and other physiological conditions causing altered renal drug elimination are presented, and the potential application of a cocktail of markers for the simultaneous measurement of drug handling is evaluated. Further investigation of the effects of disease processes on renal drug handling should include people with HIV infection, transplant recipients (renal and liver) and people with rheumatoid arthritis. Furthermore, changes in renal function in the elderly, the effect of sex on renal function, assessment of living kidney donors prior to transplantation and the investigation of renal drug interactions would also be potential applications. Once renal drug handling pathways are characterised in a patient population, the implications for accurate dosage individualisation can be assessed. The simultaneous measurement of renal function elimination pathways of drugs and metabolites has the potential to assist in understanding how renal function changes with different disease states or physiological conditions. In addition, it will further our understanding of fundamental aspects of the renal elimination of drugs.
Resumo:
Aim. The purpose of this experiment was to assess the levels of muscle soreness, serum total cholesterol (TC) and creatine kinase (CK) in the first 48 hours following fatiguing eccentric exercise performed with the triceps brachii. Methods. Eleven untrained male college students performed a total of 50 eccentric elbow extensions in 8 sets (6x7 and 2x4) with a load equal to 85% of their maximal concentric elbow extension strength. Isometric elbow extension strength, muscle soreness and circumference, and serum CK and TC concentrations were measured before, immediately after, and 2, 24 and 48 hours after the exercise. Results. Statistically reliable changes in isometric strength, serum CK and TC, muscle soreness and upper arm circumference occurred within the first 48 hours following eccentric exercise. Serum TC concentrations exhibited a very rapid (within 2 hours) reduction from pre-exercise values after eccentric exercise to a relatively stable concentration of approximately 85% of baseline. Conclusion. These results suggest that serum TC concentration may follow the time-course of reductions in force generating capacity more closely than other biochemical markers of muscle damage.
Resumo:
The product of the gene (ATM) mutated in the human genetic disorder ataxia-telangiectasia (A-T) is a high molecular weight, protein (similar to350 kDa) containing a C-terminal protein kinase domain and a number of other putative domains not yet functionally defined. The majority of ATM gene mutations in A-T patients are truncating, resulting in prematurely terminated products that are highly unstable. Missense mutations within the kinase domain and elsewhere in the molecule alter the stability of the protein and lead to loss of protein kinase activity. Only rarely are patients observed with two missense mutations and this gives rise to a milder disease phenotype. Evidence for a dominant interfering effect on normal ATM kinase activity has been reported in cell lines transfected with missense mutant ATM and in cell lines from some A-T heterozygotes. The dominant negative effect of mutant ATM is manifested by an enhancement of cellular radiosensitivity and may be responsible for the cancer predisposition observed in carriers of ATM missense mutations. In this review, we explore the domain structure of the ATM molecule, sites of interaction with other proteins and the consequences of specific amino acid changes on function. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Background-Obesity is associated with heart failure, but an effect of weight, independent of comorbidities, on cardiac structure and function is not well established. We sought whether body mass index (BMI) and insulin levels were associated with subclinical myocardial disturbances. Methods and Results-Transthoracic echocardiography, myocardial Doppler-derived systolic (sm) and early diastolic velocity ( em), strain and strain rate imaging and tissue characterization with cyclic variation (CVIB), and calibrated integrated backscatter (cIB) were obtained in 109 overweight or obese subjects and 33 referents (BMI35) and the referent patients (P
Resumo:
The basis for the neuroprotectant effect of D-mannitol in reducing the sensory neurological disturbances seen in ciguatera poisoning, is unclear. Pacific ciguatoxin-1 (P-CTX-1), at a concentration 10 nM, caused a statistically significant swelling of rat sensory dorsal root ganglia (DRG) neurons that was reversed by hyperosmolar 50 MM D-mannitol. However, using electron paramagnetic resonance (EPR) spectroscopy, it was found that P-CTX-1 failed to generate hydroxyl free radicals at concentrations of toxin that caused profound effects on neuronal excitability. Whole-cell patch-clamp recordings from DRG neurons revealed that both hyper- and iso-osmolar 50 MM D-mannitol prevented the membrane depolarisation and repetitive firing of action potentials induced by P-CTX-1. In addition, both hyper- and iso-osmolar 50 MM D-mannitol prevented the hyperpolarising shift in steady-state inactivation and the rise in leakage current through tetrodotoxin (TTX)-sensitive Na-v channels, as well as the increased rate of recovery from inactivation of TTX-resistant Nav channels induced by P-CTX-1. D-Mannitol also reduced, but did not prevent, the inhibition of peak TTX-sensitive and TTX-resistant I-Na amplitude by P-CTX-1. Additional experiments using hyper- and isoosmolar D-sorbitol, hyperosmolar sucrose and the free radical scavenging agents Trolox (R) and L-ascorbic acid showed that these agents, unlike D-mannitol, failed to prevent the effects of P-CTX-1 on spike electrogenesis and Na-v channel gating. These selective actions of D-mannitol indicate that it does not act purely as an osmotic agent to reduce swelling of nerves, but involves a more complex action dependent on the Nav channel subtype, possibly to alter or reduce toxin association. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
The gene encoding the dual-specificity tyrosine-regulated kinase DYRK1A maps to the chromosomal segment HSA21q22.2, which lies within the Down syndrome critical region. The reduction in brain size and behavioral defects observed in mice lacking one copy of the murine homologue Dyrk1A (Dyrk1A+/-) support the idea that this kinase may be involved in monosomy 21 associated mental retardation. However, the structural basis of these behavioral defects remains unclear. In the present work, we have analyzed the microstructure of cortical circuitry in the Dyrk1A+/- mouse and control littermates by intracellular injection of Lucifer Yellow in fixed cortical tissue. We found that labeled pyramidal cells were considerably smaller, less branched and less spinous in the cortex of Dyrk1A+/- mice than in control littermates. These results suggest that Dyrk1A influences the size and complexity of pyramidal cells, and thus their capability to integrate information. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
Based on clues from epidemiology, low prenatal vitamin D has been proposed as a candidate risk factor for schizophrenia. Recent animal experiments have demonstrated that transient prenatal vitamin D deficiency is associated with persistent alterations in brain morphology and neurotrophin expression. In order to explore the utility of the vitamin D animal model of schizophrenia, we examined different types of learning and memory in adult rats exposed to transient prenatal vitamin D deficiency. Compared to control animals, the prenatally deplete animals had a significant impairment of latent inhibition, a feature often associated with schizophrenia. In addition, the deplete group was (a) significantly impaired on hole board habituation and (b) significantly better at maintaining previously learnt rules of brightness discrimination in a Y-chamber. In contrast, the prenatally deplete animals showed no impairment on the spatial learning task in the radial maze, nor on two-way active avoidance learning in the shuttle-box. The results indicate that transient prenatal vitamin D depletion in the rat is associated with subtle and discrete alterations in learning and memory. The behavioural phenotype associated with this animal model may provide insights into the neurobiological correlates of the cognitive impairments of schizophrenia. (c) 2005 Elsevier B.V. All rights reserved.