919 resultados para Vehicle
Resumo:
In recent years, a wide variety of centralised and decentralised algorithms have been proposed for residential charging of electric vehicles (EVs). In this paper, we present a mathematical framework which casts the EV charging scenarios addressed by these algorithms as optimisation problems having either temporal or instantaneous optimisation objectives with respect to the different actors in the power system. Using this framework and a realistic distribution network simulation testbed, we provide a comparative evaluation of a range of different residential EV charging strategies, highlighting in each case positive and negative characteristics.
Resumo:
A periodic monitoring of the pavement condition facilitates a cost-effective distribution of the resources available for maintenance of the road infrastructure network. The task can be accurately carried out using profilometers, but such an approach is generally expensive. This paper presents a method to collect information on the road profile via accelerometers mounted in a fleet of non-specialist vehicles, such as police cars, that are in use for other purposes. It proposes an optimisation algorithm, based on Cross Entropy theory, to predict road irregularities. The Cross Entropy algorithm estimates the height of the road irregularities from vehicle accelerations at each point in time. To test the algorithm, the crossing of a half-car roll model is simulated over a range of road profiles to obtain accelerations of the vehicle sprung and unsprung masses. Then, the simulated vehicle accelerations are used as input in an iterative procedure that searches for the best solution to the inverse problem of finding road irregularities. In each iteration, a sample of road profiles is generated and an objective function defined as the sum of squares of differences between the ‘measured’ and predicted accelerations is minimized until convergence is reached. The reconstructed profile is classified according to ISO and IRI recommendations and compared to its original class. Results demonstrate that the approach is feasible and that a good estimate of the short-wavelength features of the road profile can be detected, despite the variability between the vehicles used to collect the data.
Resumo:
Highway structures such as bridges are subject to continuous degradation primarily due to ageing and environmental factors. A rational transport policy requires the monitoring of this transport infrastructure to provide adequate maintenance and guarantee the required levels of transport service and safety. In Europe, this is now a legal requirement - a European Directive requires all member states of the European Union to implement a Bridge Management System. However, the process is expensive, requiring the installation of sensing equipment and data acquisition electronics on the bridge. This paper investigates the use of an instrumented vehicle fitted with accelerometers on its axles to monitor the dynamic behaviour of bridges as an indicator of its structural condition. This approach eliminates the need for any on-site installation of measurement equipment. A simplified half-car vehicle-bridge interaction model is used in theoretical simulations to test the possibility of extracting the dynamic parameters of the bridge from the spectra of the vehicle accelerations. The effect of vehicle speed, vehicle mass and bridge span length on the detection of the bridge dynamic parameters are investigated. The algorithm is highly sensitive to the condition of the road profile and simulations are carried out for both smooth and rough profiles
Resumo:
Highway structures such as bridges are subject to continuous degradation primarily due to ageing, loading and environmental factors. A rational transport policy must monitor and provide adequate maintenance to this infrastructure to guarantee the required levels of transport service and safety. Increasingly in recent years, bridges are being instrumented and monitored on an ongoing basis due to the implementation of Bridge Management Systems. This is very effective and provides a high level of protection to the public and early warning if the bridge becomes unsafe. However, the process can be expensive and time consuming, requiring the installation of sensors and data acquisition electronics on the bridge. This paper investigates the use of an instrumented 2-axle vehicle fitted with accelerometers to monitor the dynamic behaviour of a bridge network in a simple and cost-effective manner. A simplified half car-beam interaction model is used to simulate the passage of a vehicle over a bridge. This investigation involves the frequency domain analysis of the axle accelerations as the vehicle crosses the bridge. The spectrum of the acceleration record contains noise, vehicle, bridge and road frequency components. Therefore, the bridge dynamic behaviour is monitored in simulations for both smooth and rough road surfaces. The vehicle mass and axle spacing are varied in simulations along with bridge structural damping in order to analyse the sensitivity of the vehicle accelerations to a change in bridge properties. These vehicle accelerations can be obtained for different periods of time and serve as a useful tool to monitor the variation of bridge frequency and damping with time.
Resumo:
This paper investigates the feasibility of using an instrumented vehicle to detect bridge dynamic parameters, such as natural frequency and structural damping, in a scaled laboratory experiment. In the experiment, a scaled vehicle model crosses a steel girder which has been adopted as the bridge model. The bridge model also includes a scaled road surface profile. The effects of varying vehicle model mass and speed are investigated. The damping of the girder is also varied. The bridge frequency and changes in damping are detected in the vehicle acceleration response in the presence of a rough road surface profile.
Resumo:
The axle forces applied by a vehicle through its wheels are a critical part of the interaction between vehicles, pavements and bridges. Therefore, the minimisation of these forces is important in order to promote long pavement life spans and ensure that bridge loads are small. Moreover, as the road surface roughness affects the vehicle dynamic forces, the monitoring of pavements for highways and bridges is an important task. This paper presents a novel algorithm to identify these dynamic interaction forces which involves direct instrumentation of a vehicle with accelerometers. The ability of this approach to predict the pavement roughness is also presented. Moving force identification theory is applied to a vehicle model in theoretical simulations in order to obtain the interaction forces and pavement roughness from the measured accelerations. The method is tested for a range of bridge spans in simulations and the influence of road roughness level on the accuracy of the results is investigated. Finally, the challenge for the real-world problem is addressed in a laboratory experiment.
Resumo:
This study is intended to investigate the validity of the stability diagram (SD) aided multivariate autoregressive (MAR) analysis for identifying modal parameters of a real truss bridge. The MAR models are adopted to fit the time series of the dynamic accelerations recorded from a number of observation points on the bridge; then the modal parameters are extracted from the MAR model coefficient matrix. The SD is adopted to determine statistically dominant modes. In plotting the SD, a number of stability criteria are further adopted for filtering out those modes with unstable modal parameters. By the present method, the first five modal frequencies and mode shapes are identified with very high precision, while the damping ratios are identified with high precision for the 1st mode but with poorer precision for higher modes. Moreover, the ability of the SD in selecting structural modes without getting involved in any model-order optimization problem is highlighted through a comparison study.
Resumo:
Transport accounts for 22% of greenhouse gas emissions in the United Kingdom and cars are expected tomore than double by 2050. Car manufacturers are continually aiming for a substantially reduced carbonfootprint through improved fuel efficiency and better powertrain performance due to the strict EuropeanUnion emissions standards. However, road tax, not just fuel efficiency, is a key consideration of consumerswhen purchasing a car. While measures have been taken to reduce emissions through stricter standards, infuture, alternative technologies will be used. Electric vehicles, hybrid vehicles and range extended electricvehicles have been identified as some of these future technologies. In this research a virtual test bed of aconventional internal combustion engine and a range extended electric vehicle family saloon car were builtin AVL’s vehicle and powertrain system level simulation tool, CRUISE, to simulate the New EuropeanDrive Cycle and the results were then soft-linked to a techno-economic model to compare the effectivenessof current support mechanisms over the full life cycle of both cars. The key finding indicates that althoughcarbon emissions are substantially reduced, switching is still not financially the best option for either theconsumer or the government in the long run.
Resumo:
Damage detection in bridges using vibration-based methods is an area of growing research interest. Improved assessment
methodologies combined with state-of-the-art sensor technology are rapidly making these approaches applicable for real-world
structures. Applying these techniques to the detection and monitoring of scour around bridge foundations has remained
challenging; however this area has gained attraction in recent years. Several authors have investigated a range of methods but
there is still significant work required to achieve a rounded and widely applicable methodology to detect and monitor scour.This
paper presents a novel Vehicle-Bridge-Soil Dynamic Interaction (VBSDI) model which can be used to simulate the effect of scour
on an integral bridge. The model outputs dynamic signals which can be analysed to determine modal parameters and the variation
of these parameters with respect to scour can be examined.The key novelty of this model is that it is the first numerical model for
simulating scour that combines a realistic vehicle loadingmodel with a robust foundation soil responsemodel.This paper provides a
description of the model development and explains the mathematical theory underlying themodel. Finally a case study application
of the model using typical bridge, soil, and vehicle properties is provided.
Resumo:
Bridge scour is the number one cause of failure in bridges located over waterways. Scour leads to rapid losses in foundation stiffness and can cause sudden collapse. Previous research on bridge health monitoring has used changes in natural frequency to identify damage in bridge beams. The possibility of using a similar approach to identifying scour is investigated in this paper. To assess if this approach is feasible, it is necessary to establish how scour affects the natural frequency of a bridge, and if it is possible to measure changes in frequency using the bridge dynamic response to a passing vehicle. To address these questions, a novel vehicle–bridge–soil interaction (VBSI) model was developed. By carrying out a modal study in this model, it is shown that for a wide range of possible soil states, there is a clear reduction in the natural frequency of the first mode of the bridge with scour. Moreover, it is shown that the response signals on the bridge from vehicular loading are sufficient to allow these changes in frequency to be detected.