864 resultados para Variational Convergence
Resumo:
This dissertation surveys the literature on economic growth. I review a substantial number of articles published by some of the most renowned researchers engaged in the study of economic growth. The literature is so vast that before undertaking new studies it is very important to know what has been done in the field. The dissertation has six chapters. In Chapter 1, I introduce the reader to the topic of economic growth. In Chapter 2, I present the Solow model and other contributions to the exogenous growth theory proposed in the literature. I also briefly discuss the endogenous approach to growth. In Chapter 3, I summarize the variety of econometric problems that affect the cross-country regressions. The factors that contribute to economic growth are highlighted and the validity of the empirical results is discussed. In Chapter 4, the existence of convergence, whether conditional or not, is analyzed. The literature using both cross-sectional and panel data is reviewed. An analysis on the topic of convergence using a quantile-regression framework is also provided. In Chapter 5, the controversial relationship between financial development and economic growth is analyzed. Particularly, I discuss the arguments in favour and against the Schumpeterian view that considers financial development as an important determinant of innovation and economic growth. Chapter 6 concludes the dissertation. Summing up, the literature appears to be not fully conclusive about the main determinants of economic growth, the existence of convergence and the impact of finance on growth.
Resumo:
A neural model for solving nonlinear optimization problems is presented in this paper. More specifically, a modified Hopfield network is developed and its internal parameters are computed using the valid-subspace technique. These parameters guarantee the convergence of the network to the equilibrium points that represent an optimal feasible solution. The network is shown to be completely stable and globally convergent to the solutions of nonlinear optimization problems. A study of the modified Hopfield model is also developed to analyze its stability and convergence. Simulation results are presented to validate the developed methodology.
Resumo:
In this work, the energy eigenvalues for the confined Lennard-Jones potential are calculated through the Variational Method allied to the Super symmetric Quantum Mechanics. Numerical results are obtained for different energy levels, parameters of the potential and values of confinement radius. In the limit, where this radius assumes great values, the results for the non-confined case are recovered..
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We perform variational calculations of heavy-light meson masses using a fitted formula to a lattice two-quark potential. We examine the light quark mass dependence of the meson mass using the Schrodinger equation and the Dirac equation. For the Dirac equation, a saddle-point variational principle is employed, since the Dirac Hamiltonian is not bound from below.
Resumo:
A quaternionic version of Quantum Mechanics is constructed using the Schwinger's formulation based on measurements and a Variational Principle. Commutation relations and evolution equations are provided, and the results are compared with other formulations.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A stochastic variational method is applied to calculate the binding energies and root-mean-square radii of 2, 3 and 4 alpha particles using an S-wave Ali-Bodmer potential. The results agree with other calculations. We discuss the application of the present method to study the universality in weakly-bound three and four-body systems in the context of ultracold atomic traps.
Resumo:
Complex Kohn variational principle is applied to the numerical solution of the fully off-shell Lippmann-Schwinger equation for nucleon-nucleon scattering for various partial waves including the coupled S-3(1), D-3(1), channel. Analytic expressions are obtained for all the integrals in the method for a suitable choice of expansion functions. Calculations with the partial waves S-1(0), P-1(1), D-1(2), and S-3(1)-D-3(1) of the Reid soft core potential show that the method converges faster than other solution schemes not only for the phase shift but also for the off-shell t matrix elements. We also show that it is trivial to modify this variational principle in order to make it suitable for bound-state calculation. The bound-state approach is illustrated for the S-3(1)-D-3(1) channel of the Reid soft-core potential for calculating the deuteron binding, wave function, and the D state asymptotic parameters. (c) 1995 Academic Press, Inc.
Resumo:
It is argued, contrary to various claims and expectations, that the phase shifts calculated via variational principles for the t matrix involving complex algebra may exhibit anomalous behavior. These anomalies are numerically demonstrated in the case of the complex Kohn and the Newton variational principles for the t matrix and are expected to appear for other similar variational principles for the t matrix, such as the Takatsuka-McKoy variational principle.
Resumo:
An analytical approximate method for the Dirac equation with confining power law scalar plus vector potentials, applicable to the problem of the relativistic quark confinement, is presented. The method consists in an improved version of a saddle-point variational approach and it is applied to the fundamental state of massless single quarks for some especial cases of physical interest. Our treatment emphasizes aspects such as the quantum-mechanical relativistic Virial theorem, the saddle-point character of the critical point of the expectation value of the total energy, as well as the Klein paradox and the behaviour of the saddle-point variational energies and wave functions.
Resumo:
Within the approach of supersymmetric quantum mechanics associated with the variational method a recipe to construct the superpotential of three-dimensional confined potentials in general is proposed. To illustrate the construction, the energies of the harmonic oscillator and the Hulthen potential, both confined in three dimensions are evaluated. Comparison with the corresponding results of other approximative and exact numerical results is presented. (C) 2003 Elsevier B.V. All rights reserved.